
Improved algorithms for reachability and shortest path
on low tree-width graphs

Krishnendu Chatterjee, Rasmus Ibsen-Jensen, Andreas Pavlogiannis

https://doi.org/10.15479/AT:IST-2014-187-v1-1

Deposited at: 12 Dec 2018 11:54 ISSN: 2664-1690

IST Austria (Institute of Science and Technology Austria)
Am Campus 1
A-3400 Klosterneuburg, Austria

Copyright © 2014, by the author(s).

Permission to make digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific permission.

Improved Algorithms for Reachability and Shortest Path
on Low Tree-width Graphs

Krishnendu Chatterjee and Rasmus Ibsen-Jensen and Andreas Pavlogiannis

Technical Report No. IST-2014-187-v1+1
Deposited at 14 Apr 2014 11:53
http://repository.ist.ac.at/187/1/mainfulltech.pdf

IST Austria (Institute of Science and Technology Austria)
Am Campus 1
A-3400 Klosterneuburg, Austria

Copyright © 2012, by the author(s).
All rights reserved.
Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for pro�t or
commercial advantage and that copies bear this notice and the full citation on the �rst page.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior
speci�c permission.

Improved Algorithms for Reachability and Shortest Path
on Low Tree-width Graphs

Krishnendu Chatterjee† Rasmus Ibsen-Jensen† Andreas Pavlogiannis†

† IST Austria

Abstract

We consider the reachability and shortest path problems on low tree-width graphs, with n nodes, m edges, and
tree-width t, on a standard RAM with wordsize W . We use Õ to hide polynomial factors of the inverse of the
Ackermann function. Our main contributions are three fold:

1. For reachability, we present an algorithm that requires O(n · t2 · log(n/t)) preprocessing time, O(n · (t ·
log(n/t))/W) space, and O(t/W) time for pair queries and O((n · t)/W) time for single-source queries.
Note that for constant t our algorithm uses O(n · logn) time for preprocessing; and O(n/W) time for single-
source queries, which is faster than depth first search/breath first search (after the preprocessing).

2. We present an algorithm for shortest path that requires O(n · t2) preprocessing time, O(n · t) space, and Õ(t2)
time for pair queries and O(n · t) time single-source queries.

3. We give a space versus query time trade-off algorithm for shortest path that, given any constant ε > 0, requires
O(n · t2) preprocessing time, O(nε · t2) space, and Õ(n1−ε · t2) time for pair queries.

Our algorithms improve all existing results, and use very simple data structures.

Keywords: Graph algorithms; Low tree-width graphs; Reachability and Shortest path.

1 Introduction

In this paper we present improved algorithms for the reachability and shortest path problems on low tree-width
weighted directed graphs, with n nodes, m edges, and tree-width t. We consider the problems on a standard RAM
with wordsizeW , which is assumed to be less than polynomial in n. For the purpose of least common ancestor queries
and construction of pointers, we assume that W is Ω(log n).

Reachability/shortest path problems. The pair reachability (resp. shortest path) problem is one of the most classic
graph algorithmic problems that, given a pair of nodes u, v, asks to compute if there is a path from u to v (resp.
the weight of the shortest path from u to v). The single-source variant problem given a node u asks to solve the pair
problem u, v for every node v. Finally, the all pairs variant asks to solve the pair problem for each pair u, v. While there
exist many classic algorithms for the shortest path problem, such as, A∗-algorithm (pair) [18], Dijkstra’s algorithm
(single-source) [12], Bellman-Ford algorithm (single-source) [4, 15, 22], Floyd-Warshall algorithm (all pairs) [14,
27, 24], and Johnson’s algorithm (all pairs) [19] and others for various special cases, there exist in essence only two
different algorithmic ideas for reachability: Fast matrix multiplication (all pairs) [13] and depth first search/breath first
search (DFS/BFS) (single-source) [11]. We will not explicitly compare our algorithms to the above generic algorithms,
other than DFS/BFS, as our algorithms are much faster for low tree-width graphs.

Low tree-width graphs. A very well-known concept in graph theory is the notion of tree-width of a graph, which
is a measure of how similar a graph is to a tree (a graph has tree-width 1 precisely if it is a tree). The tree-width of
a graph is defined based on a tree-decomposition of the graph [16], see Section 2 for a formal definition. Beyond
the mathematical elegance of the tree-width property for graphs, there are many classes of graphs which arise in
practice and have low (even constant) tree-width. An important example is that the control flow graph for goto-free
programs for many programming languages are of constant tree-width [26]. Also many chemical compounds have
tree-width 3 [28]. For many other applications see the surveys [8, 6]. Given a tree-decomposition of a graph with
low tree-width t, many problems on the graph become complexity-wise easier (i.e., many NP-complete problems
for arbitrary graphs can be solved in time polynomial in the size of the graph, but exponential in t, given a tree-
decomposition [3, 5, 7]). Even for problems that can be solved in polynomial time, faster algorithms can be obtained
for low tree-width graphs, for example, for the shortest path problem [10].

Previous results. The algorithmic question of the shortest path (pair, single-source, all pairs) problem for low tree-
width graphs has been considered extensively in the literature, and many algorithms have been presented [1, 10, 23].
The previous results are incomparable, in the sense that the best algorithm depends on the tree-width and the number
of queries (see rows 1-4 of Table 1 for a summary of the existing results). No previous paper has explicitly considered
the reachability problem on low tree-width graphs. This is likely because DFS/BFS achieve O(m) time and m ≤ nt.

Our results. In this work, we present several new algorithms for the reachability and shortest path problems for low
tree-width graphs. Let α(n) be the inverse of the Ackermann function. For simplicity of presentation of our results,
we hide polynomial factors of α(n) with the Õ notation. Our three main contributions are as follows:

1. (Reachability). For reachability, we present an algorithm that requires O(n · t2 · log(n/t)) preprocessing time,
O(n · t · log(n/t)) space, and answers pair queries in time O(t/W) and single-source queries in time O((n ·
t)/W). Hence the algorithm answers single-source queries faster than DFS/BFS for tree-width smaller than the
wordsize, after some preprocessing. While our algorithm achieves this using the so-called word-tricks, to the
best of our knowledge, DFS/BFS have not been made faster using word-tricks. This result is in row i of Table 1.

2. (Shortest path). For shortest path, for every existing algorithm we present an algorithm that strictly improves
the previous bounds (Theorems 4 to 6 and also Remark 4). Observe that while we present three algorithms, our
algorithm in row ii of Table 1 is better than the existing results (up to some polynomial factors of α(n) and
except for the low space result in row 4, for which row iii is better). The bounds are as follows:

(a) In Theorem 4 (Section 5) we present an algorithm that requires O(n · t2 · log(n/t)) preprocessing time,
O(n · t · log(n/t)) space, and answers pair queries in O(t) time. This strictly improves row 1 of Table 1.

(b) In Theorem 6 (Section 7) we present an algorithm that requires O(n · t2) preprocessing time, O(n · t)
space, and Õ(t2) pair query time. This corresponds to row ii of Table 1 and improves the results of

1

rows 1-3 of Table 1. We also have specific algorithms (Theorem 5 and also Remark 4) which improve the
remaining existing algorithms, not improved by Theorem 6, without ignoring polynomial factors of α(n).

(c) For row 4 in Table 1, our algorithm in row iii (details in the following item) is better, except that the
assumption on t is slightly stronger (our assumption is is t2+ε ≤ n vs. t2 · log2(n) ≤ n of [1]): Note
that the assumption t2 · log2(n) ≤ n is not explicitly mentioned in [1], but they construct components
containing at least t2 · log2(n) nodes, which implies that t2 · log2(n) ≤ n.

3. (Space and query time trade-off). Finally, we present a space and query time trade-off algorithm for shortest
path in Theorem 7 (Section 8), that given any constant ε > 0, requires O(nε · t2) space and answers pair queries
in time Õ(n1−ε · t2); and the preprocessing time required is O(n · t2). While all previous algorithms use linear
space in n, we present the first algorithm that uses sub-linear space in n and even ensures sub-linear in n query
time. This contribution is shown in row iii of Table 1. We also present an algorithm with O(log2(n) · t2) space
that answers pair queries in time O(n · t2 · log2(n)) (Remark 6, see row iv of Table 1). Our space and query
time trade-off algorithms require oracle access to the graph and its tree-decomposition.

Moreover, all our algorithms use very basic data structures where sets are stored in the form of lists, except that we
use a data structure by [25], simplifying [17], to find least common ancestors of nodes in (balanced binary) trees.

Important techniques. Our improvements are achieved by introducing several new techniques.

1. In a tree-decomposition, the bags of the tree, represent sets of nodes of the graph. The key intuition for row i
of Table 1 is to modify the tree-decomposition into a balanced tree, such that for all nodes u and v, and for all
paths P from u to v, the least common ancestor bag BL of the bags Bu and Bv containing u and v, respectively,
contain a node from P . Then we use bit-arrays to store which node in BL can u reach and which can reach v.

2. The key intuition for row ii of Table 1:
(a) One of our key improvements is a simple and fast algorithm for local distance computation (i.e., the

distance between nodes that appear in the same bag of the tree-decomposition). The algorithm uses a
list data structure to store sets of nodes of the tree-decomposition. The algorithm is based on two passes
of the tree-decomposition, where we do path shortening in each. The algorithm uses O(n · t2) time and
O(n · t) space to find the local distance for all n nodes. Our algorithms also enable fast computation of
single-source shortest path queries.

(b) Row ii of Table 1 is build on [2] and local distance computation. The technique of [2] given a tree (in this
case the tree-decomposition) splits the tree into components (subtrees) and then constructs a component
tree out of the root bags of the components. Then the algorithm proceeds recursively on both the subtrees
as well as the component tree. A direct application of the above technique leads to a problem where the
number of nodes in the roots of the components is upto a factor of t higher than the number of components.
Our trick is to make a factor of t less components and then handle the increase in the size of the subtrees
using our fast single-source shortest path algorithm (based on local distance computation from above).

3. The simplicity of our local distance computation algorithm allows us to obtain a recursive version, for any ε > 0,
for the space and query time trade-off algorithm. The idea is that for a subset of bags (where the subset is not
necessarily connected) of size close to nε/t bags, our algorithm can find the local distance in O(n · t2) time and
uses O(nε · t) space. The key trick is that nothing is stored in the components, except O(t2) words for the roots.

Related works. Other than the papers on graphs with low tree-width (mentioned above), another related work is that
of the same problem for bounded tree-width graphs but for the external memory model (aka the I/O model) [21].
While the result of [21] is not directly related to our work (since the I/O model is different from the RAM model) the
paper presents an algorithm which is similar in idea to the local distance computation. Using the same definition of b,
t and n as in Table 1, recalling that b ≥ n/t, the differences are that our algorithm for local distances (and thus also
the single-source shortest path algorithm) uses less space (O(n · t) versus O(b · t2)), and less time (O(n · t2) versus
O(b · t3)), because they run Floyd-Warshall algorithm [14, 27, 24] on each bag in their passes, instead of our more
efficient two-step path shortenings.

Organization. In Section 2 we give formal definitions of tree-width and the problems we consider. In Section 3 we
present algorithms for a more general class of graphs (in which separators exists). In Section 4 we give our local

2

Table 1: Algorithms for reachability and shortest path, pair queries and single-source queries, on a weighted directed
graph G with n nodes, m edges, and a tree-decomposition of width t and b bags (and b ≥ n/t). The model of
computation is the standard RAM model with wordsize W . We use Õ to hide polynomial factors of α(n), which is
the inverse Ackermann function. Rows 1-5 are previous results, and rows i-iv are the results of the paper.

Row Preprocessing time Space usage Pair query time Single-source query time Assumptions From
1 O(n2 · t) O(n2) – – None [23] a

2 O(n · t4) O(n · t4) Õ(t4) O(n · t4) None [10]
3 Not given b O(b · t2) O(t2 · log log n) O(n · t2 log log n) c None [1]
4 Not given O(n) d O(t3 log2(n) · (t2 +

log(t) · log log(n)))
– t2 · log2(n) ≤ n [1]

5 – O(dn/W e) – O(m) None DFS/BFS [11] e

i O(n · t2 · log(n/t)) O
(
n ·
⌈
t·log(n/t)

W

⌉)
O(
⌈
t
W

⌉
) O(

⌈
n·t
W

⌉
) None This paper e

ii O(n · t2) O(n · t) Õ(t2) O(n · t) t ≤ n
α2(n) This paper

iii O(n · t2) O(nε · t2) Õ(n1−ε · t2) – f ε > 0, t ≤ n
α2(n) This paper

iv – O(log2(n) · t2) O(n · t2 · log2(n)) – t ≤ n
α2(n) This paper

a This algorithm solves the all pairs problem in the given time and space bounds.
b The preprocessing consists of computing local distances, but no bound was given. Following the technique of our

paper, see Theorem 2, this can be done in O(n · t2) time and O(n · t) space.
c Obtained by multiplying the time for pair query by n.
d This is the space usage after preprocessing.
e Only for reachability queries.
f Not given since the size of the output is larger than the data-structure.

distance algorithm and a fast single-source shortest path algorithm, which are used in the later sections. Using our fast
single-source shortest path algorithm together with the algorithm of Section 3, in Section 5 we present an algorithm
for row i of Table 1. Then in Section 6 we present an algorithm which we modify in Section 7 to obtain row ii of
Table 1. Finally, in Section 8 we present the algorithms for rows iii and iv of Table 1.

2 Definitions

Graphs, reachability, and shortest paths. We consider a directed graph G = (V,E) where V is a set of n nodes
and E ⊆ V × V is an edge relation of m edges, along with a weight function wt : E → R on the edges of G. We
assume that (u, u) ∈ E and wt(u, u) = 0 for all u ∈ V . Given a set X ⊆ V , we denote with G � X the subgraph
(X,E ∩ (X ×X)) of G induced by the set X of nodes. A path P : u v is a sequence of nodes (x1, . . . , xk) such
that u = x1, v = xk, and for all 1 ≤ i ≤ k − 1 we have (xi, xi+1) ∈ E. The length of P is k − 1. A path P is
simple if no node repeats in the path (i.e., it does not contain a cycle). A single node is by itself a 0-length path. We
denote with E∗ ⊆ V × V the transitive closure of E, i.e., (u, v) ∈ E∗ iff there exists a path P : u v. The weight
function is extended to paths, and the weight of a path P = (x1, . . . , xk) is wt(P) =

∑k−1
i=1 wt(xi, xi+1) if |P | ≥ 1

else wt(P) = 0. For u, v ∈ V , the distance d(u, v) = minP :u v wt(P) is weight of the minimum weight simple path
P : u v, and if (u, v) 6∈ E∗, then d(u, v) =∞. Given a path P and a set of nodes A, we denote with A∩ P the set
of nodes that appear in both P and A.

Graph queries. In this work we consider the following queries on the graph G.

• Given nodes u, v ∈ V , the pair reachability query returns true iff (u, v) ∈ E∗.

• Given a node u ∈ V , the single-source reachability query returns the set {v : (u, v) ∈ E∗} of nodes reachable
from u.

• Given nodes u, v ∈ V , the pair shortest path query returns the distance d(u, v) from u to v.

3

• Given a node u ∈ V , the single-source shortest path query returns the distance d(u, v) from u to v, for all v
such that (u, v) ∈ E∗.

Separators and separator families. For a number k ∈ N, a k-separator for a graph G = (V,E) is a pair (X,C),
whereX ⊆ V with |X| ≤ k, andC = {Ci : Ci is a CC in the graph G � (V \X)} is the set of all maximal connected
components (CCs) of the graph G � (V \X) (the CCs are SCCs (strongly connected components) in the undirected
version of the graph). We sometimes simply call X a separator. For a pair of numbers k ∈ N and 0 < ∆ < 1, a
(k,∆)-separator is a k-separator (X,C) such that for all Ci ∈ C we have |Ci| ≤ n · ∆. A separator-family F is a
vertex-subset-closed family of graphs (i.e., if a graph G belongs to the family, then for each subset of nodes V ′ ⊆ V ,
the graph G � V ′ also belongs to the family), for which there exist a monotone increasing function g : N → N and
∆ > 0 such that for each graph G ∈ F of n nodes and m edges, a (g(n),∆)-separator exists and can be computed in
time O(m · g(n)).

Merge operation on a set of subsets. We now define the merge set operation on a set of subsets, which is required for
the definition of binary-separator hierarchies. Let C = {C1, C2, . . . , Cj} be a set of pairwise disjoint subset of nodes
each of size at most n · ∆ such that their union consists of n nodes, i.e., each Ci is subset of V with |Ci| ≤ n · ∆,
|
⋃

1≤i≤j Ci| = n, and Ci ∩ Ck = ∅ for i 6= k. The merge operation Merge(C) takes as argument C such that
|C| ≥ 2 and returns a pair of sets of nodes as follows: (1) If C = {C1, C2} contains two sets with |C1| ≤ |C2|,
then return (C1, C2). (2) Otherwise, let C1 and C2 be two of the smallest size sets in C and Ĉ = C1 ∪ C2, and let
C ′ = {C3, . . . , Cj , Ĉ} be the set obtained by adding Ĉ and removing C1 and C2 from C. Then return Merge(C ′).
Proposition 1. Given a set C = {C1, C2, . . . , Cj}, where (1) Ci ∩ Ck = ∅, for i 6= k; (2) |

⋃
1≤i≤j Ci| = n; and

(3) |Ci| ≤ n ·∆ for all i; let Merge(C) = (C`, Cr). Then |C`| ≤ |Cr| ≤ max(∆, 2
3) · n.

Proof. There are two cases to consider: either Cr ∈ C or Cr is a union of sets in C. If Cr ∈ C, then it has size at
most n ·∆. Otherwise, consider the last time that the union of sets were constructed to obtain Cr. At that time there
were at least three pairwise disjoint sets, and hence Cr cannot contain more than 2

3 · n elements, since each of the two
smallest sets of at least three disjoint sets covering n elements cannot be larger than n

3 .

Binary-separator-hierarchies. For our algorithms, an important concept is that of binary-separator-hierarchies1.
Consider a separator family F with a monotone function g. For a graph G ∈ F and a number ` ≥ g(n), a `-binary-
separator-hierarchy is a tree, such that each node (which we call bag) consists of a subset of nodes of the graph of size
at most `. We give a recursive definition of a `-binary-separator-hierarchy of G. If n ≤ `, the root consists of all the
nodes of G. Otherwise, if n > `, let (X,C) be a (g(n),∆)-separator of G and let (C`, Cr) = Merge(C). The root
consists of the nodes of X and the two subtrees under the root consist of `-binary-separator-hierarchies defined on the
graphs G � C` and G � Cr respectively. For a bag B, we denote with T (B) the subtree of the hierarchy rooted in B.
When it is clear from the context, we use T (B) to denote the set of nodes of G that appear in the bags in T (B). We
denote with Lv(B) the level of a bag B, defined as follows: For the root bag of the tree, the level is 0, and for all other
bags in the tree, the level of the bag is 1 plus the level of the parent (i.e., distance from the root). Finally, we denote
with Bu the unique bag in the separator-hierarchy that contains u, and with Lv(u) = Lv(Bu) the level of its bag in the
separator-hierarchy.

Tree-decomposition. Given a graph G, a tree-decomposition Tree(G) = (VT , ET) is a tree such that the following
conditions hold:

1. VT = {B0, . . . , Bn′−1 : ∀i Bi ⊆ V } and
⋃
Bi∈VT Bi = V .

2. For all (u, v) ∈ E there exists Bi ∈ VT such that u, v ∈ Bi.

3. For all i, j, k such that there exist paths Bi Bk and Bk Bj in Tree(G), we have Bi ∩Bj ⊆ Bk.

1Note that a binary-separator-hierarchy is similar to a separator-hierarchy, but since we do not use regular separator-hierarchies we do not define
them.

4

1

8

9

2

10

3

6

4

7 5 ⇒ 8 9 10

1 8 9

2 8 10

2 3 10

7 8 9

6 7 9

4 6 9 5 6 7

Figure 1: A graph G with tree-width 2 and a corresponding tree- decomposition Tree(G).

The sets Bi which are nodes in VT are called bags. The width of a tree-decomposition Tree(G) is the size of the
largest bag minus 1. Let G be a graph, T = Tree(G), and B0 be the root of T . Denote with Lv (Bi) the depth of Bi
in T , with Lv (B0) = 0. For u ∈ V , we say that a bag Bi introduces u if Bi is the bag with the smallest level among
all bags that contain u. By definition, there is exactly one bag introducing each node u. We often write Bu for the
bag that introduces u, i.e., Bu = arg minBi∈VT : u∈Bi Lv (Bi), and denote with Lv(u) = Lv (Bu). See Figure 1 for an
example of a graph and a tree-decomposition of it. We later use this example to illustrate our algorithms.
Remark 1. It follows from the above that every bag B is a |B|-separator (B,C) of G and the following condition
holds: consider any path Bi Bj in Tree(G) such that B appears in the path, then for all u ∈ (Bi) and v ∈ (Bj),
the nodes u and v do not appear in the same component in C, i.e., for all Ci ∈ C either u 6∈ Ci or v 6∈ Ci.

Semi-nice tree-decomposition. A tree-decomposition T = Tree(G) is called semi-nice if T is a binary tree, and
every bag introduces at most one node. For every graph there exists a semi-nice tree-decomposition that achieves the
tree-width ofG and uses n′ = O(n) bags [20]. Given a tree-decomposition T = Tree(G) of a graph, we consider T as
an undirected graph, and a connected component Ti is a set of bags in T such for every pairB,B′ ∈ Ti the unique path
fromB toB′ in T only goes through bags in Ti. For every connected component Ti of a semi-nice tree-decomposition
T , the tree obtained from Ti is a semi-nice tree-decomposition of the subgraph of G induced by the nodes that appear
in the bags of Ti. In the sequel, when we consider tree-decomposition Tree(G) of a graph we only consider semi-nice
tree-decomposition.
Remark 2. Given a semi-nice tree-decomposition T = Tree(G) that achieves tree-width t, every connected component
Ti of T contains at most |Ti|+ t+ 1 nodes of G.

Word tricks and least common ancestor (LCA) queries. Our reachability algorithms (in Sections 3 and 5) use so
called “word tricks” heavily. Without the word tricks, it naturally costs a factor of W in the query time and space. We
also use constant time LCA queries which cannot be done without word tricks. Without word tricks, the LCA queries
can be done with a binary search over the height of the separator hierarchies. Instead of constant time then the LCA
queries require O(log log(n/t)) time (which is added to the query time), since the hierarchy is of height O(log(n/t));
and amortized O(1) additional pointers for each bag of the separator hierarchy.

Iterated logarithms. For λ ∈ N, we use the λ-iterated logarithm, defined as:

log(λ)∗ n =

{
0 if x ≤ 1

1 + log(λ)∗
(

log(λ−1)∗ n
)

if x > 1

5

where log(0)∗ n = log n and log(1)∗ n = log∗ n. Furthermore, we use the inverse of the Ackermann function [2]. The
Ackermann function is:

A(i, j) =


2j if i = 0 and j ≥ 0

1 if i ≥ 1 and j = 0

A(i− 1, A(i, j − 1)) if i, j ≥ 1

The inverse Ackermann function is α(n) = argminj(A(j, j) ≥ n). We have that log(λ)∗ n = argminj(A(λ+ 1, j) ≥
n), and hence log(α(n)−1)∗ n = argminj(A(α(n), j) ≥ n) ≤ α(n).

Problem input. In the following sections we consider a weighted directed graph G and require that its semi-nice
tree-decomposition Tree(G) is given. For algorithms to construct semi-nice tree-decomposition (or approximation
of tree-decomposition) of graphs see [8, 6, 9]. We present several algorithms for preprocessing G such that pair and
single-source reachability and shortest path queries are answered fast.

Negative cycles. In Section 3 we consider non-negative weight functions. In Section 4 and onward, we also allow
negative weights, and the negative weights are handled as follows. If there is a negative cycle, then our algorithms
report the existence of such a cycle, and if there is no negative cycle, then it computes the shortest paths. Algorithm
LOCDIS in Section 4 reports negative cycles in O(n · t2) time and O(n · t) space, and is the basis of the following
algorithms (where we do not explicitly mention about negative cycles) (also see Remark 6).

3 Algorithms for Separator-families

In this section we present algorithms for graphs that belong to a separator-family F and for the algorithms of this
section we consider only non-negative weights. In the later sections where we focus on low-tree width graphs, we will
also consider negative weights. Since the main problem of interest is graphs with tree-width t, for some t, and they
belong to separator-families where g(n) = t + 1, our algorithms do not attempt to find separators of separators. We
first describe the preprocessing done by our algorithms (for shortest path and reachability) and then how to answer the
queries. Finally we show the correctness and time and space usage of the algorithms.

Intuitive description. Intuitively, the idea is that any path u v must go through some node in a bag which is a
common ancestor of the bagsBu andBv in the binary-separator-hierarchy. We thus simply precompute the answer for
all queries from/to each node in each bag B of the binary-separator-hierarchy to/from each node in T (B), for paths in
G � T (B). This ensures that for a node w in the highest bag on a path u v, the paths u w and w v have been
precomputed. To answer a single-source query from u, we simply proceed upward in the separator hierarchy from Bu
and for each ancestor B find the set of nodes Zu in B that u can reach, together with the nodes that each w ∈ Zu can
reach in T (B). To answer a pair query (u, v) we proceed similarly, except that we only check if there is a node w such
that u w and w v. More formally, the algorithms are as follows:

Preprocessing. We describe the preprocessing for algorithms REACH (for reachability) and SHPAT (for shortest path)
that solve the corresponding problems.

1. Construct a g(n)-binary-separator-hierarchy S for G.

2. Create pointers from each node v ∈ V to Bv , and from every bag B in S to the nodes in V that B contains.

3. (Only for REACH): Assign to each node v an index, based on a post-order depth-first-search (DFS) of the tree
— the indices for nodes in a bag can be assigned in an arbitrary way inside that bag. Also, store a map N→ V
from the index to the corresponding node. Store in each bag B the ranges of indices of the nodes that appear in
T (B) and in B.

4. Compute the number of nodes in each bag B and write it in B together with the sum of the number of nodes
contained in the ancestors of B in S.

6

5. Preprocess S such that LCA queries can be answered in constant time (e.g. using [25]).

6. Then depending on the problem, do as follows:

(a) (REACH): For each bag B of S at level i, for each node v in B, use DFS in G � T (B) to find the nodes F ′v
(from v) in T (B) that v can reach and the nodes T ′v (to v) in T (B) that can reach v. Then for each node
u ∈ T (B) let T iu contain the nodes v ∈ B such that u ∈ F ′v and let F iu contain the nodes v ∈ B such that
u ∈ T ′v . Store the sets T iu and F iu as bit-arrays in u, just after the sets T i−1

u and F i−1
u , (i.e., maybe partly

in the same word) and the sets T ′v and F ′v in v.

(b) (SHPAT): For each bagB of S, for each node v inB, use Dijkstra’s algorithm [12] (note that in this section
we consider non-negative weights) to find the distance function f(v) : T (B) → R, such that f(v)(u) is
the distance from v to u, for u ∈ T (B), in the subgraph G � T (B). Similarly, find the distance function
t(v) : T (B)→ R, such that t(v)(u) is the distance from u to v, for u ∈ T (B), in the subgraph G � T (B).
In either case we write f(v, u) = f(v)(u) and t(v, u) = t(v)(u).

Index interval property. The assignment of indices in Step 3 using DFS ensures that for every subtree T , the indices
of the nodes contained in that subtree form an interval (i.e. there exist a, b ∈ N, such that all indices of nodes in T are
in [a; b] and no index of any node outside T falls into that interval).

Pair reachability query. Given a pair u, v ∈ V , let L be the LCA bag of Bu and Bv in S. Let a be the number of
nodes in ancestors of L and b be the number of nodes in L (this is stored in L). Compute the number c which is the
boolean-AND of the first a+ b bits of Fu and Tv . Return true iff c = 1 (i.e., there exists a node w whose index is 1 in
Fu and Tv , and hence there is a path u w v).

Single-source reachability query. Given a node u ∈ V , create an output bit-array of size dn/W e words that consists
of all 0’s except that the index of u is 1. Then for i = 0 to Lv(u) consider F iu and the bag B at level i which is an
ancestor of Bu. For each node v whose entry is 1 in F iu, boolean-OR the bit array F ′v with the part of the output-bit
array whose indices correspond to nodes in F ′v . Note that such a part exists and the boolean-OR operation can be
computed in time length divided by the wordsize, because the indicies of nodes in F ′v form an interval, the endpoints
of which are stored in B. Afterwards, return the output bit array.

Pair shortest path query. Given a pair u, v ∈ V , start with L being the LCA bag of Bu and Bv in S, and let c =∞.
Then apply the following recursive procedure on (L, c): Let c′ = minv′∈L t(v′, u) + f(v′, v). If L is the root return
min(c′, c), otherwise let L′ be the parent of L and recursively proceed with (L′,min(c′, c)).

Single-source shortest path query. Given a node u ∈ V , first execute the single-source-reachability query from u,
and then run the pair shortest path query, once for each reachable node v, and return the list of the distances.
Example 1. We consider the graph G given in Figure 1. The names of the nodes in G are also the indices they get
assigned by the DFS. The algorithm preprocesses G and gets the binary-separator-hierarchy in Figure 2 and for each
node store the corresponding bit-arrays shown in Figure 3.

To answer the pair reachability query of whether node 6 can reach node 5, the algorithm proceeds as follows: First find
the LCA of the bags that contain node 6 and node 5 in the binary-separator-hierarchy. That is the bag that contains 6
and 7. Observe that there are 3 nodes in the ancestors (i.e. 8, 9, 10) and 2 nodes in (6 7). This is written down in
preprocessing. Then boolean-AND the first 3 + 2 = 5 bits of F6 = 11110 and T5 = 111011. We see that we get
11100. Since this is not all 0, the pair query of reachability from 6 to 5 returns true.

To answer the single-source reachability query for node 6, we consider F6 = 11110. We then, for each 1 take the
corresponding F ′v list and boolean-OR them together at the right place. The four 1’s in F6 corresponds to 8, 9, 10, 6, in
that order (we start in the root of the binary-separator-hierarchy and proceed downward towards the bag that contains
node 6) and F ′8 = F ′9 = F ′10 = 1111111111 and F ′6 = 1010. We then boolean-OR F ′8, F

′
9, F

′
10 together (over all bits)

and then, in the result of 1111111111, we boolean-OR the bits corresponding to indices in [4; 7] together with F ′6. We
boolean-OR these bits because the subtree rooted at the bag (6 7) (which contains node 6), consists of 4,5,6,7. Recall
that the indices of nodes that appear in some subtree rooted at some bag always form an interval. Our boolean-OR
gives us 1111111111, which then means that node 6 can reach all nodes.

7

1 2 3

8 9 10

6 7

4 5

Figure 2: A binary-separator-hierarchy obtained from G, by the algorithm REACH.

v F ′v
1 100
2 011
3 001
4 1
5 1
6 1010
7 1111
8 1111111111
9 1111111111
10 1111111111

v T ′v
1 100
2 010
3 011
4 1
5 1
6 0111
7 0001
8 1110111111
9 1110111111
10 1110111111

v Fv
1 111100
2 111011
3 111001
4 000000
5 111101
6 11110
7 11111
8 111
9 111
10 111

v Tv
1 111100
2 111001
3 111011
4 111111
5 111011
6 11111
7 11101
8 111
9 111
10 111

Figure 3: Bit-arrays for the nodes of G, by the algorithm REACH.

Lemma 1. The algorithm REACH (resp. SHPAT) correctly answers pair and single-source reachability (resp. shortest
path) queries.

Proof. First consider a query (u, v) and any path P : u v. We argue that the query returns true (in the case of
reachability) or a number not larger than wt(P) (in the case of shortest path). We first show the following claim:

Claim 1. Let P be a u v path and let w ∈ argminv′∈PLv(v′). We have that Bw is an ancestor of Bv′ in the
separator-hierarchy, for all v′ ∈ P .

Proof. Assume towards contradiction that there exists some v′ ∈ P with Bw not being an ancestor of Bv′ . By the
choice of w, we have that Bv′ is not an ancestor of Bw either. Then there exists a common ancestor B of both, for
whichBw andBv′ appear in the left and right subtree ofB. SinceB is a separator of nodes in its left and right subtree,
there exists some w′ ∈ B ∩ P which contradicts the choice of w, because Lv(w′) < Lv(w).

If (u, v) ∈ E∗, then the pair query returns true. Since we have that each P : u v consists only of nodes in T (Bw),
where Bw is the bag highest in the separator hierarchy according to Claim 1, the algorithm must return true (in the
case of reachability) or a number at most wt(P) (in the case of shortest path). More specifically about reachability:
Let Lv (Bw) = i and j be the index of w. Then bit j is 1 in T iu iff u can reach w while staying in T (Bw). Similar
reasoning holds for F iv . Then F iu boolean-AND T iv cannot be 0, since there is a path going through w which stays in
T (Bw). Also, the algorithm computed a boolean-AND of F iu and T iv as part of the partial boolean-AND of Fu and Tv
(since Bw is a common ancestor and thus above the LCA bag of Bu and Bv in the separator hierarchy). Similarly for
shortest paths, we can conclude that t(u,w) + f(w, v) ≤ wt(P).

If the pair query returns true, then (u, v) ∈ E∗. Consider a query (u, v) that returns true (resp. a number c). We argue
that there is a path between u and v (resp. and of weight c). We only argue about reachability, and the argument is

8

similar for shortest path. Since the query returned true, there is some i such that F iu boolean-AND T iv is not 0 and
such that i ≤ Lv(L), for L being the LCA of Bu and Bv . Let w be some node with index equal to a non-zero bit of
the boolean-AND. We see that u ∈ T ′w and v ∈ F ′w (because otherwise the corresponding bit could not be 1 in both
T iu and F iv). Hence there is a path from u to w to v, contained in T (Bw).

Single-source reachability queries. Consider a single-source reachability query from a node u. We argue that the j-th
bit in the output array is 1 iff u can reach the node w with index j. First, if the j-th bit is 1, then at some point of
the preprocessing, there must have been some bag Bv in level i such that (1) Bv is an ancestor of Bu; and (2) u can
reach v (by construction of F iu); and (3) v can reach w (by construction of F ′v). Hence, by transitivity (u,w) ∈ E∗.
Conversely, if (u,w) ∈ E∗, consider some path P : u w, and let v = argminv′∈PLv(v′). Then, clearly u and w
belong to T (Bv) and thus F iu contains w, for i = Lv(Bw), and F ′w contains v.

Single-source shortest path queries. The correctness of single-source shortest path follows directly from the correct-
ness of the pair and of the reachability version.

Theorem 1. Consider a graph G with n nodes and m edges, in a separator family F , with function g(n). Let W
be the wordsize of the RAM and define the function h as h(n) = g(n) if g(n) is polynomial in n and h(n) = g(n) ·
log(n/g(n)) otherwise. The algorithm REACH (resp. SHPAT) correctly answers pair and single-source reachability
(resp. shortest path) queries and requires

• O(m · h(n)) (resp. O((m+ n · log n) · h(n))) preprocessing time;

• O(n · dh(n)/W e) (resp. O(n · h(n))) space;

• O(dh(n)/W e) (resp. O(h(n))) pair reachability (resp. shortest path) query time; and

• O(n · dg(n)/W e) (resp. O(n · g(n))) single-source reachability (resp. shortest path) query time.

Proof. The correctness of the queries follows from Lemma 1. For each i, let Φi be an upper bound on the number of
nodes in T (B) for any bag B at level i. We have that Φi ≤ n · (max(∆, 2

3))i by applying Proposition 1 recursively.

We first prove the following claim:

Claim 2. Summing g(Φi) over all ` = O(log(n/g(n))) levels, we have that
∑`
i=0 g(Φi) = O(h(n)).

Proof. If g(n) is a polynomial in n we have that
∑`
i=0 g(Φi) ≤

∑`
i=0(∆′)i · g(n) = O(g(n)) = O(h(n)), for

0 < ∆′ < 1, since Φi forms an increasing geometric sequence and the last element in the sequence is n. Otherwise, if
g is not polynomial, we get from monotonicity that

∑`
i=0 g(Φi) ≤ g(n) · log(n/g(n)) = h(n).

Preprocessing time. We consider each step on its own:

1. Time usage of Step (1): The construction of internal bags at level i in the separator-hierarchy takesO(m ·g(Φi))
time. This is because each edge is in at most one subtree at level i and each subtree consists of at most Φi nodes.
Summing over all levels we get, using Claim 2, that we use O(m · h(n)) time.

2. Time usage of Step (2): Step (2) can clearly be done in O(n) time.

3, 4. Time usage of Steps (3) and (4): Step (3) can be done in O(n) time, since the time for the DFS in the separator
hierarchy is O(n), and there is one array entry per node in the whole tree. Step (4) can be incorporated in the
DFS of Step (3), with constant time spent in each bag.

5 Time usage of Step (5): Using algorithms by [25], this can be done in linear time in the size of S (which is at
most the size of G).

9

6 Time usage of Step (6): Let θ = O(m) be the cost of DFS in the case of preprocessing for reachability, and
θ = O(m+ n · log n) the cost of Dijkstra’s algorithm [12] in the case of shortest paths. For each i, every node
and edge appears in at most one subtree rooted at level i, hence the total cost for either operation in that level
is O(g(Φi) · θ). Using Claim 2 we therefore get a total running time of O(θ · h(n)) over all O(log(n/g(n)))
levels.

We see that each of the six steps requires O(θ · h(n)) time. Thus the preprocessing time is as desired.

Space usage for reachability. The binary-separator-hierarchy is a tree and has at most n bags (because each node ofG
appears in a unique bag in the hierarchy). Each node v has one pointer to the bagBv , one word, the index and a pointer
from the map (an array over the indices), and the bit-arrays Fv and Tv (and possibly F ′v and T ′v , ifBv is an internal bag
in the hierarchy). Each bit-array consists of O(h(n)) entries by Claim 2, because we use g(ni) bits for level i, where
ni is the number of nodes in the separator at level i which is an ancestor of Bv . We can divide the size of the bit-arrays
with W , by packing the bits into words. We see that we use at most O(n · dh(n)/W e+n) = O(n · dh(n)/W e) space.

Space usage for shortest path. The space usage for shortest path is similar to the one for reachability, except that we
cannot divide by W and hence, get that we use O(n · h(n)) space.

Query time: pair reachability. On a query (u, v), we first use the LCA query structure to find the LCA bag L of
Bu and Bv , and do some boolean operations on the words in L. Afterwards, the algorithm computes a boolean-AND
over a prefix of Tu and Fv and returns if that is not all 0. The length of Tu and Fv is O(h(n)) each using Claim 2
and thus it is also a bound on the length of the prefix. We can do the operation in time O(dh(n)/W e) (because both
boolean-AND and checking if a number is 0 can be done in constant time per word).

Query time: single-source reachability. Consider some level i and let Φi be an upper bound on the number of nodes
in T (B), where B is the ancestor of Bu in that level. We split into two cases. Either Φi ≥W or not. If not, we can do
the boolean-OR in time O(g(n)), otherwise we can do it in time O(Φi · g(n)/W). Thus we get a total time of at most∑`
i O(Φi · g(n)/W + g(n)) = (O(n · g(n)/W + ` · g(n)) = O(n · g(n)/W), similar to Claim 2, as desired.

Query time: pair shortest path. On a query (u, v), we first use the LCA query structure to find the LCA bag L of
Bu and Bv , and let Lv(L) = i. We then for each node v′ in L find t(v′, u) and f(v′, v) and the sum t(v′, u) + f(v′, v).
For each node v′, this can be done in constant time. We then do the same all the way up the tree. In level i there are
at most g(max(∆, 2

3)i · n) nodes in the separator of that level and hence, using an argument similar to Step (1) of
preprocessing time, we get that we use at most O(h(n)) time following Claim 2.

Query time: single-source shortest path. For any node u, and for each i, we have at most Φi nodes v, such that v
has a LCA bag with u below level i. Hence, we get a total time of

∑̀
i=0

g(Φi) · Φi ≤ g(n) · n ·
∑̀
i=0

Φi

n
= O(n · g(n)) .

The inequality is obtained as follows: since Φi ≤ (∆′)i ·n, for some constant 0 < ∆′ < 1 for all i, the geometric sum∑`
i=0

Φi

n is bounded by a constant; and moreover, since Φi ≤ n by the monotonicity of g(), we have g(Φi) ≤ g(n).
The desired result follows.

It is straightforward to find (t+1, 2
3)-separators in a semi-nice tree-decomposition using DFS (see the f(k)-partitioning

in Section 6 for an explicit construction). From Theorem 1 we obtain the following corollary.
Corollary 1. Given a (weighted) graph G = (V,E) of n nodes and m edges and a semi-nice tree-decomposition
Tree(G) of G of width t that consists of O(n · t2) bags, let t̂ = t · log(n/t). Let W be the wordsize of the RAM. There
exist algorithms for reachability (resp. shortest path) that require

• O(n · t̂ · t) (resp. O(n · t̂ · (t+ log n))) preprocessing time;

• O(n ·
⌈
t̂/W

⌉
) (resp. O(n · t̂)) space;

10

• O(
⌈
t̂/W

⌉
) (resp. O(t̂)) pair reachability (resp. shortest path) query time; and

• O(dn · t/W e) (resp. O(n · t)) single-source reachability (resp. shortest path) query time.

Proof. Any graph with tree-width t has at most O(n · t) edges (this is well-known, but it also follows from Lemma 2).
Furthermore, a bag B can be found in linear time in the size of G, such that the CCs in G � (V \ B) each contains
at most 2·n

3 nodes. Note that the nodes of B then form a (t + 1, 2
3)-separator. We construct a tree-decomposition for

each of the children in total time linear in the size of the tree-decomposition, by simply removing B and the nodes
of B from the tree-decomposition. This forms a forest, where each child bag is the root of one of the trees. We are
therefore able to proceed recursively, and Theorem 1 applies to obtain the desired bounds.

4 Local Distance and Single-source Shortest Path for Low Tree-width

In this section we present two results: computing local distances and improved preprocessing time for single-source
shortest path for low tree-width graphs. The second result follows easily from the first. Moreover, we present the
results for weight function with negative weights, and the result of this section will be used in the later sections.

4.1 Local distance computation

Consider a graph G = (V,E), with tree-decomposition (VT , ET) = Tree(G), of width t. Here we present an
algorithm to compute“local” distances, in the sense that we compute d(u, v), for all u, v such that u, v ∈ B for some
bagB ∈ VT . Our algorithm requiresO(n ·t2) time andO(n ·t) space. A similar result was shown in [10, Lemma 3.2],
except that our algorithm is a factor of t2 faster.

Use of the set-list data structure. We use various operations on a set data structure A that contains nodes from a
small subset VA ⊆ V (i.e., A ⊆ VA ⊆ V) of size bounded by t + 1, for t being the tree-width of G. Each set data
structure A is represented as a pair of lists (L1, L2) of size t+ 1 each. The list L1 stores VA in some predefined order
on V , and the list L2 is a binary list that indicates the elements of VA that are in A. The initialization of A takes
O(t · log t) time, simply by sorting VA in L1, and initializing L2 with ones in the indices corresponding to elements
in A. Intersecting two sets A1, A2, and inserting in A1 all elements of VA1

∩ A2 takes O(t) time, by simultaneously
traversing the corresponding L1 lists of the sets in-order. In some cases, L2 will not be a binary list, but a list over
R ∪ {∞}, that associates each element of VA with a real number (or infinity).

Forward and backward edges. Given a graph G = (V,E) with weight function wt and a tree-decomposition
Tree(G) of tree-width t, we represent the weighted edges of G as two sets for each node u, using the set-list data
structure:

FWD(u) = {(v,wt(u, v)) : (u, v) ∈ E and v ∈ Bu} ;

BWD(u) = {(v,wt(v, u)) : (v, u) ∈ E and v ∈ Bu} .

Clearly, for all u ∈ V , we have |FWD(u)| ≤ t + 1 and |BWD(u)| ≤ t + 1. The following lemma states that the sets
FWD(u) and BWD(u) store all edges in E. As a corollary, there are at most 2 ·n · t edges in a graph G with tree-width
t. It is well-known that a slightly stronger statement can be shown (i.e. the number of edges isO(n ·t), but the constant
hidden is below 2), but this statement suffices for our applications.
Lemma 2. For all (u, v) ∈ E, we have (v,wt(u, v)) ∈ FWD(u) or (u,wt(u, v)) ∈ BWD(v).

Proof. Consider some (u, v) ∈ E, such that Lv(v) ≤ Lv(u). By the definition of tree-decomposition, there exists
some Bi ∈ VT such that u, v ∈ Bi. Then v appears in all bags Bj in the unique path P : Bi Bv , and since
Lv(v) ≤ Lv(u), the bag Bu appears in P . Hence v ∈ Bu and (v,wt(u, v)) ∈ FWD(u). Similarly, if Lv(v) ≥ Lv(u), it
follows that (u,wt(u, v)) ∈ BWD(v).

11

Local distances. We first extend the definition of forward and backward edges to distances, and then define local
distances. Given a tree-decomposition T = Tree(G) of a graph G and a node u ∈ V , we define the local forward
set FWD∗(u) = {(v, d(u, v)) : v ∈ Bu}, and the local backward set BWD∗(u) = {(v, d(v, u)) : v ∈ Bu}, i.e.,
FWD∗(u) (resp. BWD∗(u)) is the set of forward (resp. backward) distances to and from nodes that appear in the bag
that introduces u. Given a bag B, we define the local distance relation as:

LD (B) = {(u, v, z) : u, v ∈ B and (v, z) ∈ FWD∗(u) or (u, z) ∈ BWD∗(u)}.

Clearly, for all u ∈ V , we have |FWD∗(u)| ≤ t + 1 and |BWD∗(u)| ≤ t + 1. Given the sets FWD∗(u) and BWD∗(u)
for all u ∈ V , the relation LD (B) can be constructed in O(t2) time, for all B ∈ VT (note that actually storing LD(B)
explicitly for all B ∈ VT in total requires Ω(n · t2) space, which is beyond our space requirements). The following
lemma states that the sets FWD∗ and BWD∗ store all distances between nodes that appear in the same bag.
Lemma 3. For all B ∈ VT and all u, v ∈ B, we have (u, v, d(u, v)) ∈ LD (B).

Proof. Similar to Lemma 2.

Algorithm LOCDIS. Given T = Tree(G) for some graph G, we present the algorithm LOCDIS (for local distances)
for computing the local forward and backward sets. The computation is performed as a two-way pass. For each node
u ∈ V maintain two sets FWD′(u) and BWD′(u) of pairs over Bu × (R ∪ {∞}), using the set-list data structure. For
each bag B and u, v ∈ B, we write d′(u, v) for the value z such that (v, z) ∈ FWD′(u) or (u, z) ∈ BWD′(v). Initially
set FWD′(u) = FWD(u) and BWD′(u) = BWD(u) for all u ∈ V . Then, perform the following passes.

1. First pass. Traverse T level by level starting from the leaves (bottom up), and for each encountered bag Bx that
introduces some x ∈ V , execute the following steps. For every pair of nodes u, v ∈ Bx with Lv(u) > Lv(v),
update the value of v in FWD′(u) with z = d′ (u, x) + d′ (x, v), if z is smaller than the current value of v in
FWD′(u). Similarly for v in BWD′(u) and z = d′ (v, x) + d′ (x, u), if z is smaller than the current value of v in
BWD′(u).

2. Second pass. Traverse T level by level starting from the root (top down), and for each encountered introduce
bag Bx that introduces some x ∈ V , execute the following steps. For each v ∈ Bx, update the value of v
in FWD′(x) with z = minu∈Bx (d′(x, u) + d′(u, v)) if z < d′(x, v). Similarly for v in BWD′(x) and z =
minu∈Bx (d′(v, u) + d′(u, x)) if z < d′(v, x).

As the following lemma shows, at the end of the second pass it holds that FWD′(u) = FWD∗(u) and BWD′(u) =
BWD∗(u) for each u ∈ V .
Lemma 4. For each node u ∈ V , the algorithm LOCDIS correctly computes the sets FWD∗(u) and BWD∗(u).

Proof. It is clear that whenever the algorithm processes a bag B and updates the set FWD′(u) or BWD′(u) of some
u ∈ B with a pair (v, z), then v ∈ B and z is the weight of a u v path. Given a path P : x1, . . . , xk, we say that P
is U-shaped if Lv(xi) ≥ Lv(x1), Lv(xk) for all 1 < i < k.

After the first pass processes a bag Bx that introduces some node x, for all u, v ∈ Bx, it holds that d′(u, v) ≤ wt(P),
where P is any U-shaped path such that for every intermediate node y it holds Lv(y) ≥ Lv(x) (i.e., By is a descendant
of Bx). The claim follows by an easy induction: (1) It is trivially true for Bx being a leaf of T , and (2) if Bx is not a
leaf, then every P1 : u x and P2 : x v that decompose P are
Ushape-shaped paths, and for their intermediate nodes y it holds Lv(y) ≥ Lv(x′), where Bx′ is a child of Bx.
Then the induction hypothesis applies, and d′(u, x) ≤ wt(P1), d′(x, v) ≤ wt(P2), and hence after Bx is processed,
d′(u, v) ≤ wt(P).

After the second pass processes a bag Bx that introduces some node x, it holds that (x, d(x, v)) ∈ FWD′(x) and
(v, d(v, x)) ∈ BWD′(x) for all v ∈ Bx. The statement holds trivially for the root, since |B0| = 1. We now proceed
inductively to some bagBx examined by the algorithm in the second pass. We only consider FWD′(x) (the argument is
similar for BWD′(x)). The claim is immediate if d(x, v) = wt(x, v), and follows from the first pass if d(x, v) = wt(P)
for a U-shaped path P : x v. The only case left is that d(x, v) = wt(P) for a path P : x u v, where

12

u ∈ Bx is the first node in P with Lv(u) < Lv(x). Then P ′ : x u is necessarily a U-shaped path such that for
every intermediate node y we have Lv(y) ≥ Lv(x). It follows from the first pass on Bx that d′(x, u) ≤ wt(P ′).
Additionally, both Lv(u), Lv(v) < Lv(x), hence by the induction hypothesis d′(u, v) = d(u, v), and thus d′(x, v) =
d′(x, u) + d′(u, v) = wt(P ′) + d(u, v) ≤ d(x, v).

Figure 4 depicts the two passes. It follows that at the end of the computation, for all x ∈ V we have FWD′(x) =
FWD∗(x) and BWD′(x) = BWD∗(x), as desired.

u

x

v

P1

P2

d′(u, x)
d′(x, v)

(a)

x

u

v

P ′

d′(x, u)
d′(u, v)

(b)

Figure 4: (a) In the first pass, when LOCDIS examines bag Bx, it is d′(u, x) ≤ wt(P1) and d′(x, v) ≤ wt(P2) for
all U-shaped paths P1 : u x and P2 : x v. After Bx is processed, d′(u, v) ≤ wt(P1) + wt(P2). (b) In the
second pass, when Bx is examined, every path P : x v can be decomposed to x u v where u is the first
node in P introduced above Bx. Then P ′ : x u is U-shaped and d′(x, u) ≤ wt(P ′) from the first pass, whereas
d′(u, v) = d(u, v) by the induction hypothesis. AfterBx has been processed, d′(x, v) = d′(x, u)+d′(u, v) ≤ d(x, u).

Lemma 5. Algorithm LOCDIS requires O(n · t2) time and O(n · t) space.

Proof. The algorithm LOCDIS examines each bag Bx once in each pass. It is straightforward that the time spent in
each Bx is O(t2) for computation of the z-values, and O(t2) for updating the sets FWD′ and BWD′. Hence, the total
time of the local distance computation is O(n · t2). The space bound follows from Lemma 3.

Remark 3. The algorithm LOCDIS reports any negative cycle C, by discovering that d′(u, u) < 0 for some u in C. In
the following sections we consider that there are no negative cycles in G (also see Remark 6).
Theorem 2. Given a (weighted) graph G = (V,E) and a semi-nice tree-decomposition Tree(G) of G of width t, the
algorithm LOCDIS either reports a negative cycle, or correctly computes the local distance sets, and runs in O(n · t2)
time and O(n · t) space.

4.2 Improved preprocessing time for single-source shortest path

Using the algorithm LOCDIS for local distance computation, we present an algorithm for single-source shortest path
queries with a preprocessing time of O(n · t2) and query time and space usage each being O(n · t). A similar result
was shown by [10, Theorem 3.1], except that our algorithm for preprocessing time is a factor of t2 faster and for query
time is a factor of t3 faster.

We first state two lemmas that will allow us to argue for correctness of the algorithms presented in the current and later
sections.

13

Lemma 6. Consider a weighted graph G = (V,E) and a tree-decomposition Tree(G). Let u, v ∈ V , and P ′ :
B1, B2, . . . , Bj be the unique path in T such that u ∈ B1 and v ∈ Bj . For each i ∈ {1, . . . , j − 1} and for each path
P : u v, there exists a node xi ∈ (Bi ∩Bi+1 ∩ P).

Proof. Fix a number i ∈ {1, . . . , j − 1}. We argue that for each path P : u v, there exists a node xi ∈ (Bi ∩
Bi+1 ∩ P). We construct a tree Tree′(G), which is similar to Tree(G) except that instead of having an edge between
bag Bi and bag Bi+1, there is a new bag B, that contains the nodes in Bi ∩Bi+1, and there is an edge between Bi and
B and one between B and Bi+1. It is easy to see that Tree′(G) forms a tree-decomposition of G, from the definition.
By Remark 1, each bag B′ in the unique path P ′′ : B1, . . . , Bi, B,Bi+1, . . . , Bj in Tree′(G) separates u from v in G.
Hence, each path u v must go through some node in B.

Lemma 7. Consider a weighted graph G = (V,E) and a tree-decomposition Tree(G). Let u, v ∈ V , and P ′ :
B1, B2, . . . , Bj be the unique path in T such that u ∈ B1 and v ∈ Bj . Let A = {u} ×B2 × · · · ×Bj−1 × {v}. Then
d(u, v) = min(x1,...,xj+1)∈A

∑j
i=1 zi where zi is such that (xi, xi+1, zi) ∈ LD(Bi).

Proof. Consider a witness path P : u v such that wt(P) = d(u, v). Using Lemma 6, we know that there exists
some node xi ∈ (Bi ∩ Bi+1 ∩ P), for each i ∈ {1, . . . , j}. Then, d(u, v) =

∑j
i=1 zi, where zi = d(xi, xi+1) and

since both xi and xi+1 are contained in Bi, we have that (xi, xi+1, zi) ∈ LD(Bi).

In words, Lemma 7 states that for u ∈ B1, v ∈ Bj , the distance d(u, v) can be written as the minimum sum of
distances d(xi, xi+1) between pairs of nodes (xi, xi+1) that appear in bags Bi that constitute the unique B1 Bj
path in T (see Figure 5 for an illustration).

x1 x2

x2 x3

x4 x3

x4 x5

Figure 5: The weight of the minimum weight path u = x1 x5 = v (dashed line) can be written as the sum of local
distances between nodes that appear in the path that connects their bags.

Our algorithm, namely, IMPSISOSHPA (for improved single-source shortest path) is as follows.

Preprocessing. Apply the local distance algorithm to compute the sets FWD∗(u) and BWD∗(u) for all u ∈ V .

Query. The query from a node u consists of accessing the bags of Tree(G) via DFS, starting in the bag Bu. The
algorithm maintains a function d′(u, v) for all v ∈ V , initialized with d(u, v) for all v ∈ Bx, and∞ for all other v.

14

Upon examining a bagBv for some v ∈ V for which d′(u, v) =∞), it updates d′(u, v) with z = minx∈Bv (d′(u, x)+
d(x, v)). Finally, it returns d′(u, v) for all v ∈ V .
Theorem 3. Let a weighted graph G = (V,E) and a semi-nice tree-decomposition Tree(G) of G of width t that
consists of O(n) bags be given. The algorithm IMPSISOSHPA correctly answers single-source shortest path queries
on G and requires

• O(n · t2) preprocessing time;

• O(n · t) space; and

• O(n · t) query time.

Proof. The correctness follows easily from Lemmas 4 and 7 and an induction on the DFS. Lemma 5 guarantees the
preprocessing time and space bounds. The query time follows by anO(n) time bound in traversing Tree(G), andO(t)
time spent in each bag Bv .

5 Improved Query Time for Low Tree-width

We now present improved algorithms for the problem in Corollary 1. The improvement consists of removing the
log-factor from the pair query time, while keeping the remaining complexities the same. The resulting algorithms are
called REACHTREE and SHPATREE instead of REACH and SHPAT respectively.

Modification to preprocessing, intuitive description. The idea is that every u v path goes through the LCA L of
Bu andBv . Hence in the query phase, we only want to make queries in L. To do so, we modify the bags of the binary-
separator-hierarchy so that each bag B forms a separator for the whole graph (and not just for the sub-graph T (B)).
Previously, for a path P : u v, we only stored the information in the bag highest up in the separator-hierarchy
which contained a node from P . Now we want each node in P to have that information (if they belong to a bag higher
in the hierarchy than the bags Bu and Bv). Note that this is already the case for the root. To ensure it for each other
bag, we can proceed inductively downward in the tree. The idea is that to get the information for a fixed bag B, we
consider the set of nodes adjacent T (B). All such nodes are in a separator higher in the hierarchy and are thus already
updated by induction, and for each such node z we can then test them for paths from u to/from z to/from v, where
u ∈ T (B) and v ∈ B.

Modification to preprocessing, formal description. The changes compared to the algorithms REACH and SHPAT of
Corollary 1 are as follows for the preprocessing:

1. Instead of creating a (t+ 1)-binary-separator-hierarchy (as done in Corollary 1), we create a 4 · (t+ 1)-binary-
separator-hierarchy: the difference is that instead of stopping at size t+1 for leaves, we stop at size 4·(t+1). This
results in the size of the leaves in the hierarchy being upper bounded by 4·(t+1) instead of t+1, while the size of
internal bags remains unchanged. For a bag B of the binary-separator-hierarchy, let U(B) = N(T (B)) \ T (B)
(where for a set V ′ ⊆ V the set N(V ′) is the neighbors of V ′ i.e.

⋃
v∈V ′{u : (u, v) ∈ E or (v, u) ∈ E}).

Traverse the separator-hierarchy by DFS, and for each bag B make the following modifications.

• Modification to preprocessing specific to the algorithm REACHTREE. First, preprocess G using
REACH. For each node u ∈ U(B), node v ∈ B, and w ∈ T (B), add w to F ′v (i.e. set bit number
i− a of F ′v to 1, where i is the index of w and a is such that the nodes in T (B) form the interval [a; b] for
some b), if there is a path from v to u to w (obtained by checking if v ∈ T ′u and w ∈ F ′u) and, similarly,
add w to T ′v if there is a path from w to u to v.

• Modification to preprocessing specific to the algorithm SHPATREE. First, preprocess G using SHPAT,
using the algorithm IMPSISOSHPA defined in Theorem 3 instead of Dijkstra’s algorithm for single-source
shortest path computation to determine the functions f and t. For each node v ∈ B and w ∈ T (B), let
f(v, w) = minu∈U(B)(f(v, w), t(u, v) + f(u,w)) and t(v, w) = minu∈U(B)(t(v, w), f(u, v) + t(u,w)).

15

Note that since the nodes in U(B) belong to separators higher in S, the values t(u, x) and f(u, x) have
been computed before B is examined. At the end of the DFS, replace t by t and f by f.

2. Observe that each non-leaf bagB in the binary-separator-hierarchy S corresponds to some bagB′ in the original
tree-decomposition, except that B might contain a subset of the nodes of B′ (i.e. B consists of the subset of B′

which is not contained in some ancestor of B). Our modification then introduces to B all nodes from B′. Note
that the preceding (e.g. the definition of U(B)) are defined in terms of B before this modification.

• Modification to preprocessing specific to the algorithm REACHTREE. After introducing the additional
nodes of B′ to B with i = Lv(B), construct the sets F iu and T iu from {T ′v | v ∈ B} and {F ′v | v ∈ B}
respectively, as in the algorithm REACH. More precisely, do as follows: Pick an arbitrary ordering σ on
the nodes of B, such that σ(v) is the number the node v ∈ B has been assigned by the ordering. Then, for
all w ∈ T (B) and v ∈ B, set the σ(v)-th bit of F iw to true iff w ∈ T ′v and similarly, set the σ(v)-th bit of
T iw to true iff w ∈ F ′v .

Modified reachability query. A reachability query (u, v) is then handled as follows: find the LCA L of Bu and Bv ,
and let a be the number of nodes contained in the ancestors bags of L and b the number of nodes in L (we store these
numbers in bag L). Compute the boolean-AND of the bits between bit a+1 and a+b of Fu and Tv and return whether
the answer is not all 0.

Modified shortest path query. A shortest path query (u, v) is then handled as follows: find the LCA L of Bu and
Bv , and return minv′∈L (t(v′, u) + f(v′, v)).
Example 2. We use the same example as in Example 1, to make the difference between algorithm REACH and
algorithm REACHTREE clear. Hence, we again consider the graph G given in Figure 1. The names of the nodes in
G are (still) the indices they get assigned by the DFS. The algorithm preprocesses G and gets the binary-separator-
hierarchy in Figure 6 and for each node stores the corresponding bit-arrays shown in Figure 7. The two figures are
each different from the ones in Example 1.

To answer the pair reachability query of whether node 6 can reach node 5, the algorithm proceeds as follows: First find
the LCA of the bags that contain node 6 and node 5 in the binary-separator-hierarchy. That is the bag (6 7 9). Observe
that there are 3 nodes in the ancestors (i.e. 8, 9, 10) and 3 nodes in (6 7 9). This is written down in preprocessing. Then
boolean-AND the bits from 4 (i.e. the 3 in the ancestor plus 1) to 3 + 3 = 6 (i.e., the sum of the nodes in the ancestors
and in (6 7 9)) of F6 = 111111 and T5 = 111111. We see that we get 111. Since this is not all 0, the pair query (6, 5)
returns true. Note the difference to the query in Example 1: we boolean-OR 3 bits instead of 6. This could be more
pronounced in a larger example.

To answer the single-source reachability query for node 6, we consider F6 = 111111. For each 1, we take the
corresponding F ′v list and boolean-OR them together at the right place. In other words, the 6 ones correspond to nodes
8, 9, 10, 6, 7 (also 9 again) in that order (we start in the root of the binary-separator-hierarchy and proceed downward
towards the bag that contains node 6) and F ′8 = F ′9 = F ′10 = 1111111111 and F ′6 = F ′7 = 1111. We then boolean-OR
F ′8, F

′
9, F

′
10 together (over all bits) and then, in the result of 1111111111, we boolean-OR the bits corresponding to

indices in [4; 7] together with F ′6 and F ′7: this is because the subtree rooted at the bag (6 7), that contains node 6,
consists of 4,5,6,7, and note that because of our way to assign indices the nodes of a subtree always form some interval
of indices. Thus we get the result is 1111111111, which then means that node 6 can reach all nodes. Note that this is
in essence the same as in Example 1.
Lemma 8. The algorithms REACHTREE and SHPATREE correctly answer reachability and shortest path queries
respectively.

Proof. Consider a query from u to v and let L be the LCA of Bu and Bv , corresponding to some L′ of the tree-
decomposition. It follows from Remark 1 that all paths u v must go through some node w ∈ L′, and because of the
modification, we have w ∈ L. We argue that the information u w and w v is captured in L. We only explicitly
consider REACHTREE as the argument for SHPATREE is similar. In the unmodified algorithm REACH, we only have
information about a path in the node of the highest level which contains a node on the path. We argue that for all nodes
w ∈ B for some B being L or an ancestor of L in the separator-hierarchy, if there is a path of the form u w v

16

1 2 3

8 9 10

6 7 9

4 5

Figure 6: A binary-separator-hierarchy obtained from G, by the algorithm REACHTREE.

v F ′v
1 111
2 111
3 111
4 1
5 1
6 1111
7 1111
8 1111111111
9 1111111111
10 1111111111

v T ′v
1 111
2 111
3 111
4 1
5 1
6 0111
7 0111
8 1110111111
9 1110111111
10 1110111111

v Fv
1 111111
2 111111
3 111111
4 0000001
5 1111111
6 111111
7 111111
8 111
9 111
10 111

v Tv
1 111111
2 111111
3 111111
4 1111111
5 1111111
6 111111
7 111111
8 111
9 111
10 111

Figure 7: Bit-arrays for the nodes of G, by the algorithm REACHTREE.

in G, then u ∈ T ′w and v ∈ F ′w. Note that we only need to argue this for the case where w ∈ L, but we will show the
more general statement to allow us to use induction in the level i of B.

Base case, B is the root (at level 0): The statement is true for the root already before the modification, since clearly
no path can go through a bag above the root.

Induction case, B is at level i > 0: Consider the subtree T (B), and let B′ be the corresponding bag before the
modification. Observe first that by induction, we already have the information in every node in (B \B′) (because such
nodes also appear in a bag higher in the separator-hierarchy) and thus only need to consider a node w introduced in
B. Any path from u ∈ T (B) to w must either be contained inside T (B) or go from u to some node u′ adjacent to
T (B′) and then from u′ to w. The former type of path was already handled at this level earlier (and thus still is) and
the latter must go through some node in U(B′). Since each node in U(B′) is contained in T (B′′), where B′′ is an
ancestor of B in the separator hierarchy (and hence has all information about paths to/from them and from/to nodes in
T (B′′), by induction), we query each node u′ ∈ U(B′) for paths of the form from u to u′ to w (by checking if u ∈ T ′u
and w ∈ F ′u) and from w to u′ to u. Afterwards, we have considered all paths going through some node in B, and can
then continue to the children. The desired result follows.

Lemma 9. Let a (weighted) graph G = (V,E) and a semi-nice tree-decomposition Tree(G) of G of width t that
consists of O(n) bags be given. Let t̂ = t · log(n/t). The algorithm REACHTREE (resp. SHPATREE) requires

• O(n · t̂ · t) preprocessing time;

• O(n ·
⌈
t̂/W

⌉
) (resp. O(n · t̂)) space;

• O(dt/W e) (resp. O(t)) pair shortest path query time; and

• O(dn · t/W e) (resp. O(n · t)) single-source shortest path query time.

17

Proof. The height of the 4 ·(t+1)-binary-separator-hierarchy S is stillO(log(n/t)). Denote withB′ the bagB before
adding the new nodes in Step 2. Because B has size at most t + 1, Step 2 of the preprocessing adds at most t + 1
new nodes to each such B′ that is internal in S. Since previously the size of T (B′) was at most 2

3 of the size of its
parent B′′ (by Proposition 1 for ∆ = 2

3), the size of T (B) is still some fraction of the size its parent T (B′′) in the
modified hierarchy (i.e., at most 11

12 of the size, in case |T (B′′)| = 4 · (t+ 1) nodes and t+ 1 nodes were added in B′).
Also, since we do not change the leaves of the binary-separator-hierarchy, they are still disjoint and have size O(t)
each. Therefore, we have O(n/t) such leaves and thus O(n/t) internal bags (because there is one less non-leaf bag as
compared to leaf bags). Each bag contains O(t) nodes and thus we have at most O(n) nodes over all, even counting
multiplicities (i.e., nodes that were added in multiple bags).

Single-source-queries. These queries have not changed and thus have the same running time.

Pair query time. It is clear that the query times are O(dt/W e) and O(t) respectively.

Space usage. Each node has one pointer to a bag of S and a pointer from the map. Also, each bag requires O(t) space
for the numbers it stores. Furthermore, each node u has the two bit-arrays, Tu and Fu of length at mostO(t · log(n/t)),
i.e. the height of the separator hierarchy times theO(t) nodes in each bag. Finally, the size of arrays F ′u and T ′u has not
changed as compared to before the modification (the content has in general, though). Hence we see that REACHTREE
requires O(n · t · dlog(n/t)/W e+ n) = O(n · t · dlog(n/t)/W e) space, as REACH.

Preprocessing time. We only examine the additional time spent by REACHTREE, given the computation performed
by REACH. For a fixed level i, we can find U(B) for each B in time O(m), since each edge is only in one subtree of
the separator hierarchy. Hence, we use O(m · log(n/t)) = O(n · t · log(n/t)) time in total to do so. For a fixed level i,
we argue that we make only O(n · t2) queries to level i. Fix a bag B with Lv(B) = i. It is clear that we only make
queries to B from the trees rooted at the descendants of B. Thus, we will argue that we make at most O(|T (B)| · t2)
and we are done. More precisely we argue that we make O(|T (B)| · t2 · (11/12)j−1) queries from level i + j, for
j ≥ 1 and then, summing over all the levels, we get a total of O(|T (B)| · t2) queries. It is easy to see that we make
at most O(|T (B)| · t2) queries from level i + 1 (i.e. each of the |T (B)| nodes is in one child C, and for each node
u ∈ T (C) we make a query with each node in C and each node in B). Two levels down we do not make queries from
1
12 of the nodes, which can be seen as follows: Let B′ be the separator bag of one of the children of B. Consider the
(unique since it is a tree) path between B and B′ in Tree(G). Only the child B′′ of B′ that has the bags containing
that path will make queries from T (B′) to B from level i + 2. But, by construction |B′′| ≤ 11·|B′|

12 . In general, at
level i + j at most one of the descendants of B′ (the one having the last part of the path from B′ to B) at that level
makes queries to B. Since each subtree at level i+ j contains at most 11

12 of the nodes of its parent we see that we use
O(|T (B)| · t2 · (11/12)j−1) queries from level i+ j, for each j ≥ 1. This completes the proof.

We thus conclude with the following theorem.
Theorem 4. Let a (weighted) graph G = (V,E) with n nodes and m edges and a semi-nice tree-decomposition
Tree(G) ofG of width t that consists ofO(n) bags be given. LetW be the wordsize of the RAM and let t̂ = t·log(n/t).
The algorithm REACHTREE (resp. SHPATREE) correctly answers pair and single-source reachability (resp. shortest
path) queries on G and requires

• O(n · t̂ · t) preprocessing time;

• O(n ·
⌈
t̂/W

⌉
) (resp. O(n · t̂)) space;

• O(dt/W e) (resp. O(t)) pair reachability (resp. shortest path) query time; and

• O(dn · t/W e) (resp. O(n · t)) single-source reachability (resp. shortest path) query time.

18

6 Improved Preprocessing for Low Tree-width

In this section we show a different approach for answering shortest path queries. This approach reduces the log n
factor in the preprocessing time and space usage of Theorem 4 down to (λ + 2) · log(λ)∗ n for any given λ ∈ N, but
incurs an increase in the query time by a factor of (λ+1) ·t. The described algorithm is called IMPRESHPA (improved
preprocessing for shortest path).

Recall that Lemma 7 shows that for nodes that appear in bags B, B′ of the tree-decomposition T = Tree(G), the
distance can be written as a sum of distances d(xi, xi+1) between pairs of nodes (xi, xi+1) that appear in bags Bi that
constitute the unique B B′ path in T . The main part of the preprocessing consists of manipulating summary trees.
Intuitively, given a tree-decomposition T , a summary tree T of T consists of a subset of bags of T , such that:

1. For bags B and B′ in T , B is the parent of B′ in T iff B is the lowest ancestor of B′ in T that appears in T .
2. For bags B with children B′ in T , for all u ∈ B and v ∈ B′, the distances d(u, v) and d(v, u) are stored in B′.

Hence, in such a summary tree T , the distances between all nodes in B and B′ have been summarized and can be
retrieved fast, regardless of the length of the B B′ path in T (which we would otherwise have to pay as a cost for
retrieving them). The preprocessing then applies recursive summarizations of T , so that in the end, for any two nodes
u, v ∈ V , the distance d(u, v) can be written as a sum of O(λ + 1) summarized distances, which can be retrieved
by looking up O((λ + 1) · t2) such summaries distances. The algorithmic technique is an adaptation of [2]. A direct
application results in higher preprocessing time, space, and query time complexities by at least a factor of t2 (as in
[10]).

Summary tree. Given a tree-decomposition T = Tree(G), a summary tree of T is a pair (T , S) where:

1. T = (VT , ET) is a tree with VT ⊆ VT , and each bag of T is a child of its lowest ancestor in T that appears in T .
2. S = (SF , SB) are the summary sets defined as follows. For each node u introduced in Bu in T , and Bi being

the parent of Bu in T , let SF (u) = {(v, d(u, v)) : v ∈ Bi} and SB(u) = {(v, d(v, u)) : v ∈ Bi}.

For all u that appear in some bag in T , we have both |SF (u)|, |SB(u)| ≤ t + 1. Each u ∈ V either does not appear
in T , or appears in a connected component of T (i.e., for all u ∈ V , if u appears in bags B and B′ in T then it must
appear in every bag in the unique path from B to B′ in T). We say that u is introduced in bag Bu of T if Bu is the bag
of smallest level among all bags on T that contain u.

Procedures on summary trees. The preprocessing of the tree-decomposition T = Tree(G) constructs a summary
tree T out of T , and preprocesses it, using the following operations. Given a summary tree T , we partition it and apply
recursive summarizations on the components. To achieve certain bounds on the partitions, we first make T binary,
and then apply the partitioning. Then, for each component, the root and leaf distance set computation is applied in
each component, to calculate the distances to nodes appearing in the root and leaves of the component. Finally the
summarization procedure constructs a new summary tree from the roots of the components, and the process repeats
recursively. The procedures of tree binarization, tree f(k)-partitioning, root and leaf distance set computation, and
tree summarization are described below. Based on them, we afterwards give a formal description of the preprocessing.

Tree binarization. Given a summary tree (T , S) of some T = Tree(G), the binarization of T is done as follows. For
every bag B with children B1, . . . Bj , if j ≥ 3, then introduce j − 2 copies of B, namely, B̂2, B̂3, . . . , B̂j−1. The
transformation for binarization is as follows: B has two children, B̂2 and B1; for all 2 ≤ i ≤ j− 2 the two children of
B̂i are Bi and B̂i+1; and finally, the last copy B̂j−1 has bags Bj and Bj−1 as children. If T has k bags, this process
takes O(k · t) time, and the size of the new tree is at most 2 · k. Note that the binarized tree (T , S) is also a summary
tree of T . In the sequel we only consider summary trees (T , S) where T is a binary tree.

Tree f(k)-partitioning. Given a function f(k) and a binary summary tree (T , S) of some tree-decomposition T with
|VT | = k bags, the f(k)-partitioning of T consists of partitioning T intoO

(
k

f(k)

)
connected components that contain

f(k) bags each. The partitioning of a tree is achieved as follows: use a DFS to keep track of the number of nodes in
each subtree T̃ , and whenever the number of nodes in T̃ becomes at least f(k)

2 cut T̃ off into its own component. Note

19

T

T i

...

Step 3 for λ

T j

...

Step 3 for λ

Step 3 for λ− 1

T
′

Figure 8: Scheme of the Step 3 recursion of algorithm IMPRESHPA for a given λ. A summary tree T of size k is
partitioned into components of size f(k) each, and the root and leaf distance set computation is executed. The root
bags are shown in boldface. The recursion is then two-fold: (1) the roots of the components form a new summary tree
T
′

which is recursively processed for λ − 1, and (2) each component is itself a summary tree, recursively processed
for λ.

that since (T , S) is binary, no component becomes larger than f(k). This partitioning takes linear time in the size of
T . Each component T i of the partitioning yields a summary tree of T .

Root and leaf distance set computation. Given a summary tree (T , S) and f , perform an f(k)- partitioning on T .
Examine each component T i with rootBi0. For all u ∈ V introduced in some bagBiu of T i other thanBi0, we compute
the root and leaf distance sets of u defined as R(u) =

{
(v, d(v, u)) : v ∈ Bi0

}
and Lj(u) =

{
(v, d(u, v)) : v ∈ Bj0

}
where Bj0 is the root of a child component T j of T i, such that Biu is an ancestor of Bj0.

• (Root distance set computation). For each v ∈ Bi0, to determine the root distance d(v, u) for all u, execute
the following steps. First, construct LD

(
Bi0
)

and the set A =
{

(y, z) : (v, y, z) ∈ LD
(
Bi0
)}

. Then, execute a
BFS in T i, and upon examining a bag Bij , (i) remove from A all nodes that do not appear in Bij , and (ii) for
each node u introduced in Bij , insert in A the pair (u, z′), where z′ = min(y,z)∈A(z + d(y, u)). Note that
(y, d(y, u)) ∈ BWD∗(u). Finally, insert (v, z′) in R(u). The correctness of the construction follows from
Lemma 7 and a simple induction on the BFS.

• (Leaf distance set computation). The leaf distance computation is similar to the root distance computation:
compute the leaf distance sets Lj(u) for every root Bj0 of a child component T j of T i, by constructing the set

Aj =
{

(y, z) : (y, v, z) ∈ LD
(
Bj0

)}
, and traversing the path up to the root of T i.

The time and space requirement of the root and leaf distance set computation is as follows: Each root of each com-
ponent is the source of at most 2 · (t + 1) traversals, leading to O

(
t · k

f(k)

)
traversals of length O(f(k)) each. If

each bag of T introduces at most n′ nodes, then the cost of each step of each traversal is O(t · n′) for updating the
set A and the distance sets of the n′ nodes introduced in the current bag. Hence the total time spent is O(k · t2 · n′).
The space required is dominated by the space used for storing the root and leaf distance sets, which is bounded by
O(k · t ·n′), since there exist O

(
k

f(k) · t
)

nodes v introduced in the root of some component T i, and each one appears

20

in O(f(k) · n′) distance sets.

Tree summarization. Consider a summary tree (T , S) of size k that has been partitioned into k
f(k) components, for

some f , and the root and leaf distance set computation has been carried out. The summarization of T is done by
constructing a new summary tree (T

′
, S′) as follows. The bag set VT ′ contains all the bags Bi0 that appeared as the

root of some component T i of the partitioning. A bag Bi0 is a parent of Bj0 in T
′

iff T j is a child component of T i in
T . For every node u introduced in a bag Bj0 in T

′
with parent Bi0 we construct

S′B(u) =

{
(v, z) : v ∈ Bi0 and z = min

(y,z′)∈SB(u)
z′ + d(v, y)

}
if the bag Bj0 introduces u in both T and T

′
, otherwise S′B(u) = R(u). Note that in the former case, (v, d(v, y)) ∈

R(y), hence this value can be retrieved from R(y). The computation of S′F (u) is done in a similar way, but requires
constructing the sets R′(u) =

{
(v, d(u, v)) : v ∈ Bi0

}
during the root distance set computation. This construction is

very similar to the one of R(u) and has the same complexity, and its description is omitted. The computation of the
summary sets requires O(t2) time for each node u introduced in a bag that appears in T and T

′
, and O(t) time for

all other nodes in T
′
. If there are at most n′ such nodes u, the time spent in this step is O

(
k

f(k) · t
2 · (n′ + 1)

)
. The

space required is O
(

k
f(k) · t · (n

′ + 1)
)

for storing the newly computed summary sets.

Preprocessing T = Tree(G). Now we describe the preprocessing of T in order to answer shortest path queries of the
form (u, v), where Bu is an ancestor of Bv . The preprocessing for the case where Bv is an ancestor of Bu is similar.
We later show how to answer general pair queries. The preprocessing is parametric on an arbitrarily chosen λ ∈ N,
which results in O((λ + 2) · n · t2 log(λ)∗ n) preprocessing time and O

(
(λ+ 1) · t2

)
query time (see Figure 8). The

steps of IMPRESHPA are as follows.

Step 1 First, use LOCDIS to compute the local distance sets in T , and construct the summary tree (T , S), of
T with VT = VT . The computation of summary edges S is done by traversing T via DFS, and for
each bag Bu with parent B, constructing LD (B). Lemma 7 implies that for each v ∈ B, we have
d(u, v) = miny∈Bu∩B (d(u, y) + d(y, v)) and d(v, u) = miny∈Bu∩B (d(v, y) + d(y, u)). These distances
exist in LD (B), FWD∗(u) and BWD∗(u), and are used to construct SF (u) and SB(u).

Step 2 Apply the root and leaf distance set computation on T , recursively for log(λ+1)∗ n levels, and f(k) = t ·
log(λ)∗ k. That is, each time consider a summary tree of k bags, partition it into O

(
k

t·log(λ)∗ k

)
components

of size f(k) each, and compute the root and leaf distance sets. The next level processes summary trees T i
corresponding to components in the current level. Initially we have k = O(n). For every partitioned summary
tree T i constructed in this recursion, perform a tree summarization, and let T

′
i be the resulting summary tree.

Execute Step 3 on T
′
i for λ− 1.

Step 3 Given a summary tree T of size k and some λ execute the following steps:

(a) If λ ≥ 0, perform an f(k) = log(λ)∗ k partitioning of T , and compute the root and leaf distance sets for
each component T i. If T i has size more than one, execute Step 3 on T i for λ. Perform a summarization
on the partitioned tree T , and let T

′
be the resulting summary tree. Then, execute Step 3 on T

′
for λ− 1.

(b) If λ = −1, perform an f(k) = 2·k
3 partitioning of T , and compute the root and leaf distance sets for each

component T i. If T i has size more than one, execute Step 3 on T i for λ.

Step 4 For every summary tree T in the last level of the recursion of Step 2, perform an all-pairs shortest path com-
putation on the subgraph of G induced by nodes u that appear in T .

Step 5 Preprocess each recursion tree generated in Steps 2 and 3 to answer LCA queries in constant time.

21

The time and space of preprocessing. Here we analyze the time and space requirements of Steps 1 to 5 of the
preprocessing.
Lemma 10. Given a semi-nice tree-decomposition T of G and some λ ∈ N, the preprocessing requires
O
(

(λ+ 2) · t2 · n · log(λ)∗ n
)

time and O
(

(λ+ 2) · t · n log(λ)∗ n
)

space.

Proof. We discuss the time and space complexity of each step below.

Step 1 LOCDIS requires O(n · t2) time and O(n · t) space (Lemma 5). The construction of the summary sets SF (u),
SB(u) happens at most once for each node u, requiring O(t2) time for building the local distance set LD (B) of
the parent bag B of Bu, and O(t2) time for calculating d(u, v) for all v ∈ B. Hence this step requires O(n · t2)
time. The space required is O(n · t) for storing the computed summary tree.

Step 3 Given a summary tree of k bags, there are at most t+1 nodes introduced per bag, so we substitute n′ = (t+1)
for the cost of the distance set computation and tree summarization. Then, the time spent for root and leaf
distance set computation, as well as tree summarization isO(k ·t3). Let Tλ(k) denote the time spent in Step 3 on
a summary tree of size k for a parameter λ. It is easy to verify that for λ = −1, it is Tλ(k) = O

(
t3 · k · log k

)
.

For λ ≥ 0, it is

Tλ(k) ≤ k

log(λ)∗ k
· Tλ

(
log(λ)∗ k

)
+ Tλ−1

(
k

log(λ)∗ k

)
+O

(
k · t3

)
and thus Tλ(k) = O

(
(λ+ 2) · t3 · k log(λ+1)∗ k

)
.

Similarly, the space used for Step 3 is O
(

(λ+ 2) · t2 · k · log(λ+1)∗ k
)

.

Step 2 In each level of the recursion of Step 2, every summary tree is a semi-nice tree-decomposition of T . It follows
that for the distance set computation and tree summarization n′ = 1, since at most one node is introduced per
bag. For a summary tree of size k in some level i of the recursion, the time spent for the distance set computation,
summarization, and calls to Step 3 is then

O(k · t2) + Tλ−1

(
k

t · log(λ+1)∗ ·k

)
= O

(
(λ+ 2) · k · t2

)
and since there are O

(
n
k

)
summary trees in level i, the total time spent in processing level i is O((λ +

2) · n · t2). Finally, there are O
(

log(λ+1)∗ n
)

such levels, and the total time spent in Step 2 is

O
(

(λ+ 2) · t2 · n log(λ+1)∗ n
)

. Similarly, the space used is O
(

(λ+ 2) · t · n · log(λ+1)∗ n
)

Step 4 Note that every summary tree T in the last level of the recursion of Step 2 is a semi-nice tree-decomposition
of size at most

t · log(λ)∗
(
t · log(λ)∗

(
. . . t · log(λ)∗O(n)

))
︸ ︷︷ ︸

log(λ+1)∗ n applications

= t ·
(

log(λ)∗t + log(λ)∗ log(λ)∗ t+ · · ·+ log((λ)∗)log
(λ+1)∗ n−1

t+O(1)

)

= O
(
t · log(λ)∗ t

)
since in discrete context, for all x ≥ 0, we have log(λ)∗ x ≤ 2·x

3 , and hence
∑
i log((λ)∗)i t ≤ 3 · log(λ)∗ t.

22

By Remark 2, the total number of nodes that appear in T is O
(
t · log(λ)∗ t

)
. It follows by the way edges

are stored in T that the number of edges in T is O
(
t2 · log(λ)∗ t

)
. We conclude that the all pairs reachability

computation in T requires O
(
t3 ·
(

log(λ)∗ t
)2
)

time, and there are O
(

n
t·log(λ)∗ t

)
such summary trees T ,

resulting in O
(
t2 · n · log(λ)∗ t

)
total time. The space required is O

(
t · n · log(λ)∗ t

)
for storing n

t·log(λ)∗ t

lookup matrices of size O
((

t · log(λ)∗ t
)2
)

each.

Step 5 We can preprocess each recursion tree in time and space proportional to its size [25] so this step adds no
overhead to the complexity.

The desired result follows.

Ancestor pair query. Given u, v ∈ V with Bu being an ancestor of Bv , the task is to retrieve d(u, v). First, test
whether the query can be answered by the lookup tables constructed in Step 4. If not, perform an LCA query on the
recursion tree of Step 2 to find the smallest component T of T that contains both bags Bu and Bv , and it follows that
Bu and Bv appear in two different sub-components Tu and T v . We obtain the corresponding root distance set R(v)
of v and the leaf distance set Lj(u) of u, such that Bj0 is the root of the last component T j on the path between Tu
and T v (possibly T j = T v)2. We consider the following cases:

1. If T v is a child component of Tu, then d(u, v) = miny∈Bj0
(d(u, y) + d(y, v)), where both distances have been

computed in Lj(u) and R(v). This process requires O(t) time.

2. If T v is not a child component of Tu, the process repeats recursively for the recursion of Step 3 and bags Bj0
and Bv0 , where Bv0 is the root of T v . Lemma 7 implies that

d(u, v) = min
u′∈Bj0,v′∈Bk0

(d(u, u′) + d(u′, v′) + d(v′, v))

and the goal is to retrieve all distances d(u′, v′). Using the same process as for u, v, all d(u′, v′) are retrieved
recursively. The process might be repeated further on the recursion of Step 3, for up to λ+ 1 levels. Hence the
worst case time for answering the query is O((λ+ 1) · t2). The core process is depicted in Figure 9.

Pair query. The preprocessing and query phases for answering shortest path queries (u, v) where Bv is an ancestor
of Bu is similar to that where Bu is ancestor of Bv . In order to handle general pair queries, additionally preprocess T
to answer LCA queries in constant time. Let B be the LCA of Bu and Bv . As in the description of queries above, we
can compute the sets M = {(y, d(u, y)) : y ∈ B} and N = {(y, d(y, v)) : y ∈ B} in O((λ+ 1) · t2) time, and return
d(u, v) = min(y,z1)∈M,(y,z2)∈N (z1 + z2).

Single-source queries. Since we have computed local distances for each bag, we can use the single-source query
algorithm IMPSISOSHPA from Theorem 3 to answer single-source queries in O(n · t) time.

Correctness. The preprocessing consists of summarizing distances along paths B B′ of T , for all u ∈ B and
v ∈ B′, where B and B′ are chosen conveniently to allow for fast queries. The correctness of IMPRESHPA then
follows directly from Lemma 7.
Theorem 5. Let λ ∈ N, a weighted graph G = (V,E) of n nodes and m edges and a semi-nice tree-decomposition
Tree(G) of G of width t that consists of O(n) bags be given. The algorithm IMPRESHPA correctly answers pair and
single-source shortest path queries on G and requires

• O
(

(λ+ 2) · n · t2 · log(λ)∗ n
)

preprocessing time;

2This can be done using the algorithm in [25] which we currently use for LCA queries

23

Bu

Bj0 = Bv0

Bv

T u

T v

u

y

v

d(u, y) ∈ Lj(u)

d(y, v) ∈ R(v)

(a)

Bu

Bj0

Bv0

Bv

T u

T v

u

u′

v′

v

d(u, u′) ∈ Lj(u)

d(v′, v) ∈ R(v)

d(u′, v′) from Step 3
recursively

(b)

Figure 9: The two cases described in the query (u, v). Boldface bags are the root bags of their components. (a) If T v
is a child component of Tu, the answer is retrieved from Step 2 recursion, by combining Lj(u) and R(v).(b) If T v is
not a child component of Tu, the additional distances d(u′, v′) are retrieved from Step 3 recursion.

• O
(

(λ+ 2) · n · t · log(λ)∗ n
)

space;

• O
(
(λ+ 1) · t2

)
pair shortest path query time; and

• O(n · t) single-source shortest path query time.

7 Preprocessing Linear in n

In this section we describe a modification of the preprocessing described in Section 6 that reduces the preprocessing
time to linear in n (i.e., O

(
n · t2

)
), at the expense of increasing the pair query time by α2(n) (i.e., O

(
t2 · α2(n)

)
.

Note that by using λ = α(n) − 1 in the preprocessing phase of algorithm IMPRESHPA of Section 6, we achieve
preprocessing time O

(
t2 · n · α2(n)

)
. Intuitively, the super-linear bound in n arises because of O(α(n)) levels of

recursion in Step 2, each one spawning α(n) recursions in Step 3, until the parameter λ becomes −1. In this section
we modify IMPRESHPA to obtain an algorithm called LIPRESHPA (linear preprocessing for shortest path) that slightly
alters Step 2 to remove the dependency on α2(n). In this direction, we consider only the case where t ≤ n

α2(n) . The
algorithm LIPRESHPA is obtained by applying the following modifications to IMPRESHPA.

1. Instead of Step 2, partition T intoO
(

n
t·α2(n)

)
components of sizeO

(
t · α2(n)

)
each. Perform a summarization

on T , and apply Step 3 on the resulting summary tree T
′

for λ = α(n)− 1.

24

2. Skip Step 4.

It follows easily from the analysis of Lemma 10 that the preprocessing of LIPRESHPA requires O
(
n · t2

)
time and

O(n · t) space.

Ancestor pair query. Given a query (u, v), where Bu is an ancestor of Bv , proceed as follows. If Bu and Bv
belong to the same component T i of the modified Step 2, the query is answered by performing the single-source
shortest path search in the component T i starting from Bu. This is run as the single-source query of Section 4.2, with
additionally restricting the DFS in the nodes that appear in T i. If Bu and Bv appear in different components Tu and
T v respectively, a single-source shortest path algorithm is executed in each one to determine the distances d(u, u′)
and d(v′, v) for all u′ ∈ Bj0 and v′ ∈ Bv0 , where Bj0 is the the root of the unique child component of Tu on the path
Bu Bv , and Bv0 is the root of T v . Then for all such u′, v′, the distances d(u′, v′) are determined as in the algorithm
IMPRESHPA, from the recursion of Step 3, and d(u, v) is then

d(u, v) = min
u′∈Bj0,v′∈Bv0

(d(u, u′) + d(u′, v′) + d(v′, v)) .

The query time is then O(α2(n) · t2 + α(n) · t2) = O(α2(n) · t2), where the first term is for the single-source queries
inside each component of size O(α2(n) · t), and the second term is for determining d(u′, v′) for all described u′, v′,
using at most α(n) levels of recursion of Step 3.

Pair query. The preprocessing and query phases for answering shortest path queries (u, v) where Bv is an ancestor
of Bu is similar to that where Bu is ancestor of Bv . In order to handle general pair queries, additionally preprocess
T to answer LCA queries in constant time. Let Bi be the LCA of Bu and Bv . As in the description of queries above,
we can compute the sets M = {(y, d(u, y)) : y ∈ Bi} and N = {(y, d(y, v)) : y ∈ Bi} in O((λ+ 1) · t2) time, and
return d(u, v) = min(y,z1)∈M,(y,z2)∈N (z1 + z2).

Correctness. The correctness of LIPRESHPA follows from the correctness of LIPRESHPA and IMPRESHPA, and we
thus obtain the following theorem.
Theorem 6. Let a weighted graph G = (V,E) of n nodes and m edges and a semi-nice tree-decomposition Tree(G)
of G of width t, for t ≤ n

α2(n) , that consists of O(n) bags be given. The algorithm LIPRESHPA correctly answers
single-source and pair shortest path queries on G and requires

• O(n · t2) preprocessing time;

• O(n · t) space;

• O(t2 · α2(n)) pair shortest path query time; and

• O(n · t) single-source shortest path query time.
Remark 4. Note that the algorithm LIPRESHPA requires O(t2 · α2(n)) pair query time compared to the query time
of O(t4 · α(n)) from [10], and thus, is slower when t2 ≤ α(n). To obtain an algorithm which is faster, even for such
small t, in each component created in Step 2, we preprocess the component similarly to an algorithm in [2] with linear
preprocessing time in n′ and logarithmic query time in n′ where n′ is the size of the component. By using the technique
of local distance computation introduced in this paper, we obtain an O(n′ · t2) preprocessing time and O(n′ · t) space
for a component of size n′ and query time of O(log(n′) · t2). Since each component has size O(α2(n) · t) and there
are O(n

α2(n)·t) of them, this requires O(n · t2) time for preprocessing, O(t2 · log t · log(α2(n))) = O(t2 · log t ·α(n))

time for a pair query, and O(n · t) space. Thus we obtain bounds that are better than the previous preprocessing time
and space, and pair query time [10].

8 Space vs Query Time Trade-off for Sub-linear Space

The algorithm in Section 7 suggests a way to trade query time for space. We call this algorithm the LOWSPSHPA (for
low space shortest path) algorithm. The idea is to create sufficiently large components in the initial partitioning of T ,

25

for which no preprocessing is done. Then, a summarization T
′

of T is of sufficiently small size to be preprocessed
by LIPRESHPA. Answering a query (u, v) is handled similarly as in LIPRESHPA, but requires additional time for
processing the components in which u and v appear (since they have not been preprocessed).
Remark 5 (Oracle). To distinguish the input space from the working space, we consider that the algorithm LOWSP-
SHPA has oracle access to (1) the weighted graph G; and (2) a semi-nice tree-decomposition Tree(G) of G of width
t, for t ≤ n

α2(n) , that consists of O(n) bags; and (3) for each bag B ∈ Tree(G) the level of B in Tree(G) and the
number of bags in the subtree T (B).

We first describe modifications in the tree partitioning and local distance computation that allows LOWSPSHPA to
operate in the desired space bounds.

Tree partitioning: The algorithm LOWSPTREEPART. We first present the algorithm LOWSPTREEPART for comput-
ing a tree partitioning in little space. Given a semi-nice tree-decomposition T = Tree(G) for a given graph G over n
nodes and a number j ≤ n the algorithm LOWSPTREEPART partitions T into O(nj) connected components forming a
component tree, each containing O(j) bags, in O(n) time and O(nj) extra space. The partitioning is, like in Section 6,
based on a post-order DFS traversal of the tree. In the DFS traversal, the algorithm has a component forest (which
forms a component tree at the end of the traversal), a set of trees, where each tree consists of bags, which are roots of
components. Also, in the DFS traversal, the algorithm has a stack of triples (`, c, L) where ` is a level, c is a number
(of bags), and L is a list of trees in the component forest. Consider a step of the DFS traversal, in which the algorithm
considers some bag B at level i:

1. First, the DFS traversal partitions the children of B recursively, because it is post-order.
2. Second, consider the (at most) two triples on the stack with level i. Let them be (i`, c`, L`) and (ir, cr, Lr)

respectively if they exist.
3. If (ik, ck, Lk) was not in the stack for k ∈ {`, r}, then let (ik, ck, Lk) = (i, 0, ∅).
4. Let c′ = c` + cr be the number of bags cut off below B and let c′′ be the number of bags in T (B) (obtained

from the oracle).
5. If c′′ − c′ ≥ j, then

(a) Add B to the component forest, with each B′ ∈ Lk, for k ∈ {`, r} as children and remove B′ from the
forest.

(b) Add (i− 1, c′′, (B)) to the stack, where (B) is the list that contains only B.
6. Otherwise, if c′′ − c′ < j and c′ > 0, add (i− 1, c′, L` ◦Lr) to the stack, where L` ◦Lr is the concatenation of

the lists L` and Lr.
7. Otherwise, if c′′ − c′ < j and c′ = 0, add nothing to the stack.
8. Follow the post-order DFS traversal to the parent of B.

Lemma 11. Given an oracle as described in Remark 5 and a number j, the algorithm LOWSPTREEPART computes a
partitioning of T into O(n/j) partitions each of size between j and 2 · j, except for one component, in time O(n) and
requiring O(n/j) extra space.

Proof. It is easy to see that the algorithm is correct.

Observe that the number of edges in the component forest is at most the number of cuts, that is at most O(n/j).
Also, at all points, each triple (i, c, L) in the stack, is such that L is not the empty list and each component tree in the
component forest is in precisely one triple of the stack. This shows that it contains at most O(n/j) triples and the sum
of the length of the lists used is also at most O(n/j). Note that the total time used is O(n) for the DFS traversal.

The extended component Ext(C). In a partition with a component C, let component Ext(C) be the component C
together with the bags which are the roots of the child-components of C in the component tree. Note that Ext(C)
contains at most twice the number of bags of C, because the tree-decomposition T was semi-nice (and thus binary).

Local root distance computation: The algorithm LOWSPLOCDIS. Let ε > 0 be a given constant, and letA = nε ·t2.
Consider some component tree T . We now describe how to recursively perform the local distance computation (as

26

described in Section 4) of roots of components in T (and find negative cycles anywhere). The resulting algorithm will
be called LOWSPLOCDIS and will require O(n · t2) time and O(A) space. We will describe the computation on a
(sub)-component, using recursion. Consider some partitioning of T and a component C and let K be the size of C.
Let {B1, B2, . . . Bj} be the set of roots of components in Ext(C). We have two parts, each corresponding to a pass
of the algorithm LOCDIS. The first pass is as follows:

Base case: If K · t ≤ nε, execute the following steps:
(a) Compute the first pass of local distance computation in G � C, following LOCDIS.
(b) Check if there is a negative cycle by testing if d(u, u) < 0 for some u ∈ C. If so terminate the recursion

and return “Negative cycle”.
(c) Store the local distances d(u, v) for u, v ∈ Bi as a ((t+ 1)× (t+ 1))-matrix Mi in Bi for each i.
(d) Discard everything, but the matrices Mi constructed in the previous step.

Recursive case: Otherwise, if K · t > nε, execute the following steps:
Partition step: Partition C up into O(nε) sub-components {C1, C2, . . . , Cj} forming a component tree T̂ , such

that each Ci has size O(Knε) using LOWSPTREEPART.
(a) Consider repeatedly Ci, such that the first pass of local root distances has been computed for the roots of

all children of Ci in T̂ (this is initially the case for the leaves).
i. Compute recursively the first pass of local root distances on Ext(Ci).

ii. Store the local distances d(u, v) for u, v ∈ Bi as a (t× t)-matrix Mi in Bi for each i.
iii. Discard everything, but the matrices Mi constructed in the previous step.

The second pass is similar (the difference is that the access of sub-components is top-down instead of bottom-up and
that we execute both passes instead of just the first) and formally as follows:

Base case: If K · t ≤ nε, execute the following steps:
(a) Compute both passes of local distance computation in G � C, following LOCDIS.
(b) Check if there is a negative cycle by testing if d(u, u) < 0 for some u ∈ C. If so terminate the recursion

and return “Negative cycle”.
(c) Store the local distances d(u, v) for u, v ∈ Bi as a (t× t)-matrix Mi in Bi for each i.
(d) Discard everything, but the matrices Mi constructed in the previous step.

Recursive case: Otherwise, if K · t > nε, execute the following steps:
Partition step: Partition C up into O(nε) sub-components {C1, C2, . . . , Cj} forming a component tree T̂ , such

that each Ci has size O(Knε) using LOWSPTREEPART.
(a) Consider repeatedly Ci, such that the first pass of local root distances has been computed for the parent of

Ci in T̂ (this is initially the case for the root).
i. Compute recursively both passes of local root distances on Ext(Ci).

ii. Store the local distances d(u, v) for u, v ∈ Bi as a (t× t)-matrix Mi in Bi for each i.
iii. Discard everything, but the matrices Mi constructed in the previous step.

Computing the local distances in the roots of the components T then consists of running the above two passes on T ,
where we partition according to T in each Partition step on T .
Lemma 12. Given an ε > 0, the algorithm LOWSPLOCDIS requires O(n · t2) time and O(nε · t2) space.

Proof. Note that our algorithm for tree-partitioning is deterministic and thus we always get the same partitioning
when we recompute it. Also, notice that the second pass recursively calls both the second and the first pass on the
sub-components, but the first pass only recursively calls the first. Since the depth of the recursion is O(1

ε) there are at
most O(1

ε) recursive calls on a fixed component.

We will now prove the following claim:

Claim 3. A given bag B of the tree-decomposition is in at most 2 components at the lowest level.

Proof. Consider a fixed sub-component C with root B′. Let {B1, B2, . . . , Bj} be the roots of components which are
in Ext(C) but are not B′. We see that no Bi, for any i, will become the root of a sub-component (at any level of the

27

recursion) in Ext(C). This is because Bi is a leaf in C, and each sub-component (at any level of the recursion) has
size at least t (since K · t > A, and thus K

nε ≥ t) and can therefore not be made out of a leaf alone. Thus, if a bag is a
root of a sub-component at some level, but not the root of the whole tree at the start, then it is in 2 components at the
lowest level, otherwise it is only in 1.

The time to compute the two passes in the base case on a component C is O(n̂ · t2), where n̂ is the size of the
component. Hence, the total time for the base case is O(1

ε · n · t
2), using the claim. Also, in the recursive case, we

spend linear time (for the partitioning) and therefore use O(1
ε · n) time for that in total on a fixed level and O(ε−2 · n)

time in total over all levels. Hence, overall we use O(1
ε · n · t

2 + ε−2 · n) = O(n · t2) time in total.

The space usage is O(Aε) because, whenever we are at the lowest level of recursion, we store a partitioning on each of
the 1

ε levels and such a partitioning requires O(A) space (for the matrices in the roots of the O(nε) many components
at that level). Furthermore, on the lowest level we use O(n̂ · t) = O(A) space (because of our criteria for stopping the
recursion), where the size of the component is n̂.

Correctness. The correctness of the base case follows directly from Lemma 4 (which shows the correctness of
LOCDIS). Note that instead of starting the first pass from the leaves and processing bottom-up in LOCDIS, it suffices
to iterate over bags, such that all bags below the bag have already been processed by the first pass. This gives
us the ordering used in LOWSPLOCDIS on the components. Futheremore, since LOWSPLOCDIS do not recurse on
componentsC, but on the extended component Ext(C), we see that all leaves of Ext(C) (which are either leaves of the
tree-decomposition or roots of some lower component) have either been processed by the first pass of LOWSPLOCDIS
in case they are roots of some lower components, or are leaves in the tree-decomposition. It follows that the first pass
of LOWSPLOCDIS is correct. The correctness of the second pass is similar. We run both passes in the second pass
because the matrices computed in the sub-components would otherwise be thrown away between passes. This give us
the following lemma.
Lemma 13. Given an oracle as described in Remark 5, a constant ε > 0, and a component tree T , the algorithm
LOWSPLOCDIS finds a negative cycle if it exists in G, and otherwise computes the local distances for the roots of the
components in T and in either case requires O(n · t2) time and O(nε · t2) space.

Similarly to LOWSPLOCDIS one can also compute the root and leaf distances, see Section 6, in O(n · t2) time and
O(nε · t2) space.
Remark 6. It is straightforward to see that if instead of splitting into components of sizeO(Knε), we consider a modified
algorithm that splits into components of size n

4i at recursion depth i (using LOWSPTREEPART), until components of
size at most 4 are obtained, then the recursion depth is at most log(n) (note that we use 4i because the partitions might
be a factor of two larger). This modified algorithm (of LOWSPLOCDIS) would still be correct following the same
argument. Also, using a similar argument to the one in Lemma 12 (especially we can still use the claim because we
still never recurse on a component of size 1) we get that the time required is O(n · t2 · log2(n)) and space required
is O(t2 · log2(n)). Similar modified algorithms are also obtained for root and leaf distance computation. Using
the modified algorithms we can solve pair queries u, v as follows: First find the LCA L of Bu and Bv (by processing
bottom-up fromBu andBv in the tree-decomposition using the oracle for the tree-decomposition as well as for finding
the level ofBu andBv — the latter to synchronize the movement). Then using the local distances d(u,w) and d(w, v),
for eachw ∈ Lwe can the find the distance from u to v as minw∈L d(u,w)+d(w, v). Those distances can be obtained
as follows: Let the partition P be the one that partitions the tree into four components, one with root each of Bu, Bv ,
L, and the root of T . The distances d(u,w) and d(w, v) are then part of the root and leaf distances computed on T if
we use the partitioning P . Thus, we can compute the shortest path from u to v in G in O(n · t2 · log2(n)) time and
O(t2 · log2(n)) space. Note that with the modified algorithm for local distance computation we can also report the
existence of a negative cycle in O(n · t2 · log2(n)) time and O(t2 · log2(n)) space.

The preprocessing of algorithm LOWSPSHPA. We are now ready to describe the preprocessing as performed by
LOWSPSHPA. Let ε > 0 be given and let Size = max(n1−ε · α2(n), t · α2(n)) (which is less than n by assumption
on t). The preprocessing is as follows:

28

Step 1 Partition Tree(G) into O(n
Size) components of size O(Size) each.

Step 2 For each root of each component apply the local distance computation algorithm LOWSPLOCDIS, and con-
struct the partitioned summary tree T where each bag corresponds to a root of a component.

Step 3 Preprocess T according to LIPRESHPA.

Pair querying in algorithm LOWSPSHPA. To solve a query from u to v, let Cu be the component that contains Bu,
and Cv be the component that contains Bv .

1. Test if Cu = Cv , by proceeding upward from Bu and Bv in the tree-decomposition until the root of Cu and Cv
are reached (the roots of components are marked).

2. If Cu = Cv , execute the following steps:
(a) Find the LCA bag L of Bu and Bv using the tree-decomposition together with the level of Bu and Bv .
(b) Partition Cu into O(Size) partitions, such that Bu and Bv and L is the root of their corresponding sub-

component, using LOWSPTREEPART.
(c) Compute local, root and leaf distances on Cu.
(d) Use the root and leaf distance computation to compute d(u, v) = minw∈L d(u,w) + d(w, v) and return.

3. Otherwise, if Cu 6= Cv , execute the following steps:
(a) Let Bu0 (resp. Bv0) be the root bag of Cu (resp. Cv).
(b) Compute the LCA component L of Bu0 and Bv0 using a constant time LCA query on the component tree.
(c) If L = Bu0 execute the following steps:

i. Find C ′v the last component on the path from Bv0 to L in T (using the algorithm for constant time
LCA queries). Let B′v be the root of C ′v .

ii. Partition Ext(Cu) into O(nε) components such that Bu0 and B′v are the root of their respective com-
ponents.

iii. Partition Ext(Cv) into O(nε) components such that Bv0 is the root of the component that contains it.
iv. Find local, root and leaf distances in Ext(Cu) and Ext(Cv) based on the partitioning.
v. Use the root and leaf distances to compute (1) d(u,w1), for each w1 ∈ B′v; and (2) d(w1, w2) for

each w1 ∈ B′v and w2 ∈ Bv0 (this root and leaf distance computation was computed as a part of the
preprocessing); and (3) d(w2, v), for each w2 ∈ Bv0 .

vi. Return d(u, v) = minw1∈B′v,w2∈Bv0 d(u,w1) + d(w1, w2) + d(w2, v).
(d) If L = Bv0 it is similar to the above.
(e) If Bv0 6= L 6= Bu0 execute the following steps:

i. Find C ′v (resp. C ′u) the last component on the path from Bv0 (resp. Bu0) to L in T (using the algorithm
for constant time LCA queries). Let B′v (resp. B′u) be the root of C ′v (resp. C ′u).

ii. Partition Ext(L) into O(nε) components such that B′u and B′v are the root of their respective compo-
nents.

iii. Partition Ext(Cu) into O(nε) components such that Bu0 is the root of the component that contains it.
iv. Partition Ext(Cv) into O(nε) components such that Bv0 is the root of the component that contains it.
v. Find local, root and leaf distances in Ext(Cu) and Ext(Cv) and Ext(L) based on the partitioning.

vi. Use the root and leaf distances to compute (1) d(u,w1), for each w1 ∈ Bu0 ; and (2) d(w1, w2) for
each w1 ∈ Bu0 and w2 ∈ B′u (this root and leaf distance computation was computed as a part of
the preprocessing); and (3) d(w2, w3) for each w2 ∈ B′u and B′v using Ext(L); and (4) d(w3, w4)
for each w3 ∈ B′v and w4 ∈ Bv0 (this root and leaf distance computation was computed as a part of
the preprocessing); and (5) d(w4, v), for each w4 ∈ Bv0 . Then inductively compute d(u,wi+1) =
minwi d(u,wi) + d(wi, wi+1) for each wi+1 (note that d(u,w1) is already computed).

vii. Return d(u, v) = minw4
(d(u,w4) + d(w4, v))

In all cases, after the computation of some query, remove all the data-structures used.

Correctness. In each case of the algorithm we find the shortest path among paths of the form w0 = u w1 w2
· · · v = wk, where each of wi ranges over some bag Bi. It is easy to see that the bags Bi are bags on the path from
Bu to Bv in T . We see that in any path from u to v there must be a node in each Bi following Remark 1. Also, it

29

is straightforward to see that we compute the distance between each pair wi, wi+1 correctly for all i, using either pair
queries from algorithm IMPRESHPA in Section 6 or using LOWSPLOCDIS. Finally, it is easy to see that we compute
the distance from u to v correctly given that we computed the distance between each pair wi, wi+1 correctly.

Time and space requirements. It is clear that our preprocessing can be done as described in time O(n · t2) and
O(nε · t) space. In regards to the query, we see that the local and root and leaf distance preprocessing (of which we
do at most 4) requires O(n1−ε · t2 · α2(n)) time (the size of each component times t2) similarly to Lemma 3 and
O(nε · t2) space, using the algorithms LOWSPTREEPART and LOWSPLOCDIS. In the query we also use our data-
structure (computed in the preprocessing) upto two times, which takes O(t2 · α2(n)) time each and then at the end
we use O(t2) time to answer the query (we only find O(t2) edges and only need to consider certain paths of length at
most 5). This then takes O(n1−ε · t2 · α2(n)) time and O(nε · t2) space.

This establishes the following theorem.
Theorem 7. Given a constant ε > 0 and oracle access to (1) a weighted graph G = (V,E) of n nodes and m edges;
and (2) a semi-nice tree-decomposition Tree(G) of G of width t, for t ≤ n

α2(n) , that consists of O(n) bags; and
(3) for each bag B ∈ Tree(G) the number of bags in the subtree under B. Then the algorithm LOWSPSHPA correctly
answers pair shortest path queries on G and requires

• O(n · t2) preprocessing time;

• O(nε · t2) space; and

• O(n1−ε · t2 · α2(n)) pair shortest path query time
Remark 7. Technically, we only have access to an oracle of the tree-decomposition and thus cannot store the informa-
tion in the roots of the components as described. This can be solved by having the component tree as a data-structure
and various sub-components at any given time.

References

[1] T. Akiba, C. Sommer, and K. Kawarabayashi. Shortest-Path Queries for Complex Networks: Exploiting Low
Tree-width Outside the Core. In 15th International Conference on Extending Database Technology (EDBT),
pages 144–155, 2012.

[2] N. Alon and B. Schieber. Optimal preprocessing for answering on-line product queries. Technical report, Tel
Aviv University, 1987.

[3] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted to partial k-trees .
Discrete Applied Mathematics, 23(1):11 – 24, 1989.

[4] R. Bellman. On a Routing Problem. Quarterly of Applied Mathematics, 16:87–90, 1958.

[5] M. Bern, E. Lawler, and A. Wong. Linear-time computation of optimal subgraphs of decomposable graphs.
Journal of Algorithms, 8(2):216 – 235, 1987.

[6] H. Bodlaender. Discovering treewidth. In SOFSEM 2005: Theory and Practice of Computer Science, volume
3381 of Lecture Notes in Computer Science, pages 1–16. Springer Berlin Heidelberg, 2005.

[7] H. L. Bodlaender. Dynamic programming on graphs with bounded treewidth. In Automata, Languages and
Programming, volume 317 of Lecture Notes in Computer Science, pages 105–118. Springer Berlin Heidelberg,
1988.

[8] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybern., 11(1-2):1–21, 1993.

[9] H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and M. Pilipczuk. An O(ckn) 5-
Approximation Algorithm for Treewidth. 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science, 0:499–508, 2013.

30

[10] S. Chaudhuri and C. D. Zaroliagis. Shortest Paths in Digraphs of Small Treewidth. Part I: Sequential Algorithms.
Algorithmica, 27:212–226, 1995.

[11] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction To Algorithms. MIT Press, 2001.

[12] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269–271, 1959.

[13] M. J. Fischer and A. R. Meyer. Boolean Matrix Multiplication and Transitive Closure. In SWAT (FOCS), pages
129–131. IEEE Computer Society, 1971.

[14] R. W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345, 1962.

[15] L. R. Ford. Network Flow Theory. Report P-923, The Rand Corporation, 1956.

[16] R. Halin. S-functions for graphs. Journal of Geometry, 8(1-2):171–186, 1976.

[17] D. Harel and R. Tarjan. Fast Algorithms for Finding Nearest Common Ancestors. SIAM Journal on Computing,
13(2):338–355, 1984.

[18] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernetics, SSC-4(2):100–107, 1968.

[19] D. B. Johnson. Efficient Algorithms for Shortest Paths in Sparse Networks. J. ACM, 24(1):1–13, Jan. 1977.

[20] T. Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in Computer Science.
Springer, 1994.

[21] A. Maheshwari and N. Zeh. I/O-Efficient Algorithms for Graphs of Bounded Treewidth. Algorithmica,
54(3):413–469, 2009.

[22] E. F. Moore. The shortest path through a maze. In Proceedings of the International Symposium on the Theory of
Switching, and Annals of the Computation Laboratory of Harvard University, pages 285–292. Harvard University
Press, 1959.

[23] L. R. Planken, M. M. de Weerdt, and R. P. van der Krogt. Computing all-pairs shortest paths by leveraging low
treewidth. In Proceedings of the Twenty-first International Conference on Automated Planning and Scheduling
(ICAPS-11), pages 170–177. AAAI Press, May 2011. Honourable mention for best student paper.

[24] B. Roy. Transitivité et connexité. C. R. Acad. Sci. Paris, 249:216–218, 1959.

[25] B. Schieber and U. Vishkin. On Finding Lowest Common Ancestors: Simplification and Parallelization. SIAM
Journal on Computing, 17(6):1253–1262, 1988.

[26] M. Thorup. All Structured Programs Have Small Tree Width and Good Register Allocation. Information and
Computation, 142(2):159 – 181, 1998.

[27] S. Warshall. A Theorem on Boolean Matrices. J. ACM, 9(1):11–12, Jan. 1962.

[28] A. Yamaguchi, K. F. Aoki, and H. Mamitsuka. Graph complexity of chemical compounds in biological pathways,
2003.

31

